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In this paper, we investigate the rigorous convergence of the Density Matrix
Equation (or Quantum Liouville Equation) towards the Quantum Boltzmann
Equation (or Pauli Master Equation). We start from the Density Matrix Equation
posed on a cubic box of size L with periodic boundary conditions, describing the
quantum motion of a particle in the box subject to an external potential V.
The physics motivates the introduction of a damping term acting on the off-
diagonal part of the density matrix, with a characteristic damping time a −1.
Then, the convergence can be proved by letting successively L tend to infinity
and a to zero. The proof relies heavily on a lemma which allows to control some
oscillatory integrals posed in large dimensional spaces. The present paper
improves a previous announcement [CD].
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1. INTRODUCTION

1.1. Introduction

In this paper we are interested in the quantum dynamics of an electron in
a given periodic distribution of obstacles in d dimensions of space (d \ 3,
we will actually restrict ourselves with the case d=3). More exactly the



electron is assumed to evolve on a Torus, and the present dynamics is
naturally described by a periodic Von-Neumann equation. In our model,
the size of the period is measured by the large scaling parameter L, and
each elementary cell contains one obstacle occupying a volume of the order
O(1). We consider the asymptotic dynamics as LQ.. In order to obtain a
non-trivial limiting dynamics, one has to rescale time as well, and to look
at the evolution of the electron on long time scales of the order T, with
TQ., unless the electron essentially performs a ‘‘free flight’’ in the limit
LQ.. The present paper is concerned with the so-called low-density
regime (or: Boltzmann–Grad regime) where the ratio T ’ Ld is prescribed.
In this scaling indeed, the obstacles occupy a proportion ’ 1/Ld of the
total volume, so that the probability for the electron to hit an obstacle once
per unit time on this time scale is unity.

The issue in considering such a model is the following: it is physically
expected (see, e.g., [Pa], [VH1,2,3], [KL1,2], [Ku], [Pr], [Vk], [Zw] or
also [Ck], see [Fi] for recent developments) that the present system tends
to be described by a linear Boltzmann equation in the low-density asymp-
totics, and precise convergence results in this direction have been actually
proved in various situations where the obstacles are randomly distributed
(see, e.g., [Sp1], [HLW], [La], [EY]). In particular, the initially time-
reversible model is expected to be asymptotically described by a time-irre-
versible equation. Contrary to the ‘‘random’’ situation, the present paper
deals at variance with a model which is both deterministic and periodic,
which is a very strong constraint as well as a non-generic case. While the
stochastic approach somehow ensures that the desired convergence towards a
linear Boltzmann equation holds for almost every distribution of obstacles,
the present paper wishes to investigate the same convergence in one partic-
ular configuration, namely the periodic one.

Obviously, the periodic situation leads to specific coherence, or reso-
nance effects, which are somehow smoothed out in the random situation.
These effects turn out to be extremely strong, and to abnormally dominate
the limiting procedure: it is actually proved in [CD1,2] that the direct limit
LQ., T ’ Ld in the original periodic Von-Neumann equation does not
lead to the expected linear Boltzmann equation. The two papers [CD1,2]
show in fact that the above mentionned coherence effects can be precisely
quantified making use of number theoretical considerations, and the limit-
ing dynamics is proved to remain time-reversible in this case. For this
reason, the present paper introduces some ‘‘noise’’ in the model, in that we
let the system {electron + potential} additionaly interact with another
system, typically a bath of photons or phonons. This leads to the adding of
an additional damping term in the original Von-Neumann equation, which
modelizes at a phenomenologic level ([NM], [SSL]) the above mentionned
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interaction. It is measured by the relaxation time 1/a > 0. It makes the
modified Von-Neuman equation (2.8) in which we pass to the limit readily
time-irreversible. This damping term, which at first sight can be viewed
as an artificial trick, is actually present in most physically realistic cases
[Boy], [Lo], [NM], see also [Hu] for the necessity of considering such
additional interactions.

Our main result is the following: in the low-density limit LQ.,
T ’ Ld, followed by the limit aQ 0 where the interaction with the external
system vanishes, the modified dynamics of the electron is asymptotically
described by a linear Boltzmann equation (Theorem 3.3). Moreover, the
cross-section involved in the limiting Boltzmann equation is given by a full
power series expansion in the potential (3.32), (3.34), and the lower order
term satisfies Fermi’s Golden Rule (3.35). Lengthy calculations which are
deferred to another work [Ca2] actually prove that this expansion coin-
cides with the usual Born series expansion of conventional scattering theory
(3.38), (3.39) . In view of the negative results proved in [CP1,2], the two
limits in L and a do not commute. The results presented here heavily
rely on the control of some oscillatory integrals in large dimensions
(Lemma 3.1).

We close this introduction with some references. The first formal deri-
vations of the Pauli Master Equation are due to [Pa], [KL1,2], [Ku],
[VH1,2,3]. Other works in this direction are due to [Zw], [Pr], [Ja],
[Mei] and recently, to [Fi]. Later, many authors did indeed rigorously
justify this derivation [Sp1], [La], [HLW], and more recently , [EY], but
all these references deal with random potentials. The present paper is, to
our knowledge, the first to present a derivation of the Quantum Boltzmann
Equation for deterministic potentials and to follow the formal approach
based on time-dependent scattering theory as outlined in the appendix.
Similar questions are dealt with in the framework of classical mechanics in
[Sp2,3] and [VbLLS]. We also mention [Ni1,2], where the square of the
scattering matrix is proved to be the right object allowing to describe some
semi-classical limits, but only finitely many fixed scatterers are considered.
Finally, we mention [Ca1], in which the size of the box is kept fixed and
the limit equation is a reversible retarded time integral equation.

A review about the convergence result presented here and the non-
convergence results proved in [CP1,2] can be found in [Ca3].

1.2. Motivation of the Present Work

We give here two remarks motivating the present work.
At first, we wish to underline a strong parallel between the results dis-

cussed here at the quantum level, and other, somehow similar, results valid
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at the classical level, since it is a major motivation for this paper as well as
[CP1,2]. The present paper investigates at the quantum level the con-
vergence of the dynamics of an electron in a periodic distribution of obsta-
cles in the low-density limit. Adding a damping term which modelizes the
interaction of the electron with an external ‘‘reservoir’’ (a standard proce-
dure in many contexts of statistical physics, see [Sp2,3], see also
[CEFM]), we prove the expected convergence towards a linear Boltzmann
equation in the appropriate limit. Though the addition of a damping term
makes our model time-irreversible while the stochastic approach proves the
convergence (in expectation) of a true time-reversible dynamics towards
an irreversible dynamics, the present result is somehow analogous, in a
deterministic framework, to the convergence results established in the
stochastic framework. On the other hand, the results proved in [CP1,2]
indicates that the true periodic situation in the case of zero damping leads
to specific coherence effects, measured in terms of number theoretical
arguments, which in turn prevent the convergence towards the desired
Boltzmann equation. These convergence, respectively non-convergence
results at the quantum level have the following important analogon at the
classical level: it has been proved in [BBS] that the classical dynamics
of an electron in a random distribution of obstacles converges, in the
appropriate low-density limit, towards a linear Boltzmann equation.
However, the work [BGW] proves that, when the distribution is periodic,
the convergence towards a Boltzmann equation cannot hold, thus showing
that the periodic situation is degenerate in the sense that it is in the zero-
measure set where the expected convergence fails. On the more, the non-
convergence result of [BGW] relies as in [CP1,2] on ‘‘coherence’’ effects
specific to the periodic case which can be precisely quantified thanks to
number theoretical considerations. Roughly speaking, we may say that
too many trajectories never hit any obstacle in the periodic situation,
which makes this situation specific both at the classical and at the quantum
level.

A second strong motivation for the present work, and more precisely
for the limit in L we consider here, is the following. This paper aims at
giving a rigorous derivation of the Pauli Master Equation (or Quantum
Boltzmann Equation) starting from the Quantum Liouville Equation (or
Von-Neumann Equation). This problem has received considerable interest
since the early formal derivation of Pauli [Pa]. Our approach actually tries
to mimic the elementary derivation of Fermi’s Golden Rule based on time-
dependent scattering theory which can be found in many textbooks, e.g.,
[Boh], [CTDRG], [CTDL], [Mes], [SSL], and which has been recently
revived in [Co]. (We recall that Fermi’s Golden Rule gives the expression
of the transition rate involved in the Pauli Master Equation). This is where
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our limit in L originates. Elementary time-dependent scattering theory
[Boh] considers indeed a Hamiltonian of the form H0+V in a finite box of
size L, where H0 is the free kinetic energy. Initially, particles are supposed
concentrated on an eigenstate state kn of H0 associated with the energy
en % n2/L2. The goal is to compute the time asymptotics of the population
|Cp(t)|2=|(k(t), kp)|2 of the initially void states of energy ep, p ] n, where
k(t) denotes the wave-function of the particle at time t. It is well known
that, if the energy levels remain discrete (i.e., if the size of the box is left
unchanged), the behaviour of |Cp(t)|2 is either an oscillatory function of
time if the energies are different (ep ] en) or a quadratic function of time if
the energies are equal (ep=en), but can by no means be a linear function of
time. However, scattering theory aims at producing a rate of change of the
populations, i.e., a probability per unit of time. Therefore, one looks for a
linear in time behaviour of |Cp(t)|2. To remove this apparent paradox, one
must therefore let the size of the box go to infinity. Indeed, when the level
spacings are set to zero, i.e., as LQ., the oscillatory function of time
|Cp(t)|2, where now p is a continuous variable ranging in the wave-vector
space R3, formally is, in the sense of distributions of the p variable, asymp-
totic as time goes to infinity to a linear function of time multiplied by a
delta function of the differences of the energies of the initial and final states
d(en − ep). In this sense, one recovers the usual Fermi Golden Rule as a
succession of two limits LQ. then tQ.. Note that we recall these
standard and formal computations below in the appendix. In particular,
the process of taking the size of the box to infinity is of primary impor-
tance and not just a technicality, because one cannot deal from the onset
with an infinite medium, due to the above mentionned reasons: in an infi-
nite box, the eigenstates of the unperturbed Hamiltonian H0 are not nor-
malized, and therefore unphysical, and it cannot be given any meaning to
the quantity |Cp(t)|2. This point of view thus emphasizes the contrast
between the case where the spectrum is discrete, and the case where it
becomes continuous. On this particular point, we wish to quote the work
[Co], where the effect of ‘‘discretizing the spectrum’’ is studied from a
physical point of view, [CP1,2] where this effect is quantitatively studied in
the periodic case, as well as [Ca1] for a mathematical work showing that
the large-time/small potential limit (analogous to the weak-coupling limit)
cannot give the physically expected linear Boltzmann equation when
studied in a periodic box of fixed finite size.

1.3. Presentation of the Results

The present paper follows the subsequent lines:
1- (Section 2)
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1a- As a starting point (Section 2.1), we write down the equation
describing the dynamics of an electron in a periodic box, and we introduce
the phenomenological damping term needed in our analysis. We also
introduce the appropriate scalings and initial data under consideration. We
are thus led to considering a (damped) Von-Neumann equation posed on
the so-called density matrix of the electron. We recall that the diagonal part
of the density matrix (in the momentum representation kn), denoted by
rL, a

d (t, n) (see below for the notations), precisely gives the populations
|Cn(t)|2. Note that the damping term acts on the off-diagonal part of the
density matrix only.

1b- Then (Section 2.2), we follow the computations in [Ca1]: the
discreteness of the energy levels and the fact that the evolution of the
diagonal part only depends on the action of the perturbed Hamiltonian on
the off-diagonal part (a universal phenomenon due to the commutator
structure of the equation) allow us to write a closed equation for the
populations, which is equivalent to the original quantum Liouville equation
(Theorem 2.1). This equation has the form of a retarded time integral
equation (non-Markovian dynamics),

“

“t
rL, a

d (t, n)= C
k ¥ Z

3
F
t

0
sL, a(s, n, k) rL, a

d (s, k) ds−F
t

0
s2 L, a(s, n) rL, a

d (s, n) ds,
(1.1)

for some cross-sections sL, a and s2 L, a depending on the scaling parameters
L and a, whose explicit value is computed as a power series in the poten-
tial V. We refer to the sequel for the precise meaning of the notations.

1c- Then (Section 2.3), we present a formal approach in the case of zero
damping. It indicates that the low-density limit LQ., T ’ L3 (which, in
the language of conventional scattering theory used in Section 1.2, provides
at the same time the two limits, i.e., the size of the box to infinity and the
time to infinity), turns out to formally give the desired convergence towards
a pointwise in time (Markovian) Boltzmann equation, with a cross-section
satisfying the Fermi–Golden–Rule at the lower order. However, we
mention that this formal limit cannot be rigorously justified because it
involves a limit in an oscillatory series which becomes an oscillatory
integral, a situation which is not described by the classical stationary phase
theorem. Moreover, the formal result is actually wrong in one dimension as
well as in large dimensions d \ 3, as it is proved in [CP1,2].

2- (Section 3) To rigorously obtain the true Quantum Boltzmann
equation, one needs therefore to make use of the damping term: from
a technical point of view, it provides us with a regularizing parameter
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a > 0, additional to the scaling parameter L describing the low-density
process. In the language of Section 1.2, this parameter allows to somehow
decouple the limits LQ. and tQ.. Now we perform the various limiting
procedures:

2a- (Theorem 3.1) Firstly, the convergence proof relies on establishing
various a priori estimates which are independent of L (but not on a).

2b- (Theorem 3.2) The limit LQ. is then taken first and takes the
original damped retarded time integral equation to a damped local-in-time
equation of the form (see below for the notations),

“

“t
rad(t, n)=F

R
3
sa(n, k) rad(t, k) dk−s2

a(n) rad(t, n), (1.2)

for some cross-sections sa and s2 a which we explicitely compute as power
series in the potential V. In particular, we see that the dynamics of the
electron becomes Markovian along the asymptotic process, while being by
no means Markovian initially, see also [EY] on this point.

2c- (Theorem 3.3) The limit aQ 0 now allows to remove the damping
and to obtain (see below for the notations),

“

“t
rd(t, n)=F

R
3
s(n, k) rd(t, k) dk−s2(n) rd(t, n), (1.3)

where the cross sections s and s2 are given as power series of the potential V,
and they satisfy the Fermi Golden Rule at lower order in V (Theorem 3.3),
i.e.,

s(n, k)=2pd(n2−k2) |V1(n−k)|2+O(|V1 |3). (1.4)

The full series defining s can actually be proved to be identical with the
celebrated Born series—see [Ca2]—a fact which is far from obvious in
view of formulae given in Theorem 3.3.

2d- (Lemma 3.1) The last limit aQ 0 relies in an absolutely essential
way on the control of the singularity and the growth with the dimension of
certain oscillatory integrals with quadratic phases in large dimension. This
Lemma lies at the core of the convergence proof presented here. It gives the
estimates independent of a needed along the asymptotic process. Also,
since the cross-section involved in (1.3) appears as a power-series in the
potential, this lemma allows to control the convergence of these power
series.
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3- (Section 4) The full convergence proofs of the above statements are
given.

Our main results are Theorem 2.1 (getting a closed equation for the
diagonal part only), Theorem 3.1 (a priori bounds on the solution to
the Von-Neumann equation), Theorem 3.2 (the limit LQ., where the
dynamics becomes Markovian), Theorem 3.3 (the limit aQ 0, where we
recover the Quantum Boltzmann equation with the correct cross-section),
as well as the key Lemma 3.1 (control of oscillatory integrals in higher
dimensions).

2. THE MODEL AND ITS FORMAL ASYMPTOTICS

2.1. The Mathematical Model under Consideration

Before writing down the equation in which we actually perform the
asymptotic process and introducing the damping term, we write, as a first
step, the equation describing the evolution of an electron evolving on a
Torus [0, 2pL]3 under the mere influence of a potential V. As is well
known, it is actually described by the periodic Von-Neumann equation in
the box [0, 2pL]3, with periodic boundary conditions,

i“tr̃(t, x, y)=(−Dx+Dy) r̃(t, x, y)+(V(x)−V(y)) r̃(t, x, y), (2.1)

where r̃(t, x, y) is the particle density matrix, which is the mathematical
object describing the state of the electron at time t ¥ R (see [CTDL]),
depending on two space variables x and y both belonging to [0, 2pL]3. We
mention that the boundary conditions can easily be modified into Dirichlet
or Neumann boundary conditions, see Section 5.

Here and throughout the paper, we make the following important
assumption on the given potential V(x),

˛V(x) is real-valued and compactly supported, Supp(V(x)) … ]0, 2pL[3,

V(x) is a ‘‘smooth’’ function of x ¥ R3, (2.2)

where the precise ‘‘smoothness’’ assumption on V is written in the next
section (see Definition 3.1 and assumption (3.5)). The compactness
assumption ensures that the potential (or: obstacle) occupies a volume
of the order O(1) in a cell of the order O(L3), which is the natural low-
density situation. Note that this assumption can somewhat be relaxed,
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and the results that we present are also valid if the potential V=VL

depends on L and converges to a fixed profile V. belonging to the same
spaces as in Definition 3.1 and (3.5).

Now, the various asymptotic processes are naturally performed in the
Fourier space rather than directly on (2.1). For this reason, we define, for
any n and p ¥ Z3, the following Fourier transforms,

r(t, n, p) :=

F
[0, 2pL]6

r2(t, x, y)
1

(2pL)
3
2

exp 1+i
n ·y
L
2 1

(2pL)
3
2

exp 1 −i
p ·x
L
2 dx dy,

(2.3)

as well as the more standard,

V1(n) :=F
[0, 2pL]3

V(x) exp(− in · x) dx 1=F
R
3
V(x) exp(− in ·x) dx2, (2.4)

for any n ¥ R3. The last equality comes from the assumption on the support
of V and V1( · ) is by assumption a fixed ‘‘smooth’’ profile. Here, bold letters
n, p,... denote continuous variables belonging typically to R3, whereas plain
letters n, p,... denote discrete variables belonging typically to Z3, a conven-
tion used throughout the paper. With these notations, the original Von-
Neumann equation (2.1) becomes,

“

“t
r(t, n, p)=−i

p2−n2

L2 r(t, n, p)

+
i

(2pL)3
C

k ¥ Z
3

3V1 1 k−n
L
2 r(t, k, p)−V1 1 p−k

L
2 r(t, n, k)4.

(2.5)

Note that the definition (2.3) is the natural one since the functions,
kn(x) :=(2pL) −d/2 exp(− in ·x/L), (n ¥ Z3) are the eigenfunctions of the
operator −Dx on the space of periodic functions in the box [0, 2pL]3, with
degenerate eigenvalues, En :=n2/L2 (n ¥ Z3).

Before proceeding further, we now define the diagonal and off-diago-
nal parts of r respectively as,

rd(t, n) :=r(t, n, n), rnd(t, n, p) :=r(t, n, p) 1(n ] p), (2.6)

where 1(n ] p) denotes the characteristic function of the set {n ] p}. The
diagonal part rd(t, n) represents the occupation number of the n th eigenstate
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of the Laplacian, whereas the non-diagonal part represents the correlations
between the occupation numbers of the n th and p th eigenstates.

We now come to writing the model in which we shall actually perform
the asymptotic process. This needs the introduction a phenomenological
damping term on the off-diagonal elements in the original Eq. (2.5). Also,
this leads to rescaling the various quantities, namely time, potential and
absorption. More precisely, let T denote the time-scale, l the typical
amplitude of the potential, and a the damping parameter. Our starting
point reads, with these notations,

1
T
“

“t
rL, a(t, n, p)

=−i
p2−n2

L2 rL, a(t, n, p)−arL, a(t, n, p) 1(n ] p)

+
il

(2pL)3
C

k ¥ Z
3

3V1 1 k−n
L
2 rL, a(t, k, p)−V1 1 p−k

L
2 rL, a(t, n, k)4 , (2.7)

(compare with (2.5)), where we now explicitely index the dependence of the
density matrix upon the scaling parameters L and a (and write rL, a

d and
rL, a

nd as well for the diagonal and off-diagonal parts of rL, a respectively).
Equation (2.7) also reads, upon splitting rL, a into its diagonal and off-
diagonal parts,

˛
T −1
“tr

L, a
nd (t, n, p)

=+i
n2−p2

L2 rL, a
nd (t, n, p)−ar

L, a
nd (t, n, p)

+i
l

(2pL)3
 V1 1 p−n

L
2{rL, a

d (t, p)−rL, a
d (t, n)}

+i
l

(2pL)3
C
k ] p

V1 1 k−n
L
2 rL, a

nd (t, k, p)

−
il

(2pL)3
C
k ] n

V1 1 p−k
L
2 rL, a

nd (t, n, k),

T −1
“tr

L, a
d (t, n)

=+
il

(2pL)3
C
k ] n

3V1 1 k−n
L
2 rL, a

nd (t, k, n)−V1 1 n−k
L
2 rL, a

nd (t, n, k)4 ,
(2.8)
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To be complete, we now precise the exact asymptotic regime and the specific
initial data under consideration. Firstly, we are interested in the following
low density regime,

T=(2pL)3, |l| [ l0, (2.9)

where l0 is some (small) constant independent of a and L. Note that
Eq. (2.7) introduces a damping scaled by a in the new time scale T, which
is an extremely strong damping. Secondly, and as it is standard in this
field (see, e.g., [Ku], [KL1,2], [Ck], [Zw]) we are only interested in
performing the asymptotics LQ., aQ 0 in (2.8) for particular initial
data which are stationary states of the free Von-Neuman equation
iT −1
“r2/“t=(−Dx+Dy) r2. In other words, we wish to quantify the large

time influence of the potential for initial states which are equilibrium states
of the unperturbed hamiltonian −Dx. The initial data of interest in the
present paper are thus taken of the form,

˛ r
L, a
nd (t, n, p)|t=0=0,

rL, a
d (t, n)|t=0=(2pL) −3 r0

d
1 n
L
2 ,

r0
d(n) \ 0 is a given ‘‘smooth’’ function of n ¥ R3,

(2.10)

where again the precise ‘‘smoothness’’ assumption needed on r0
d is written in

the next section (see Definition 3.1 and assumption (3.5)). The assumption
(2.10) generalizes both the case of initial thermodynamical equilibrium
where rL, a(t, n, p)|t=0 % L −3 exp(−bn2/L2) 1[n=p] and b is the inverse
temperature, and the more general case where rL, a(t=0) is an arbitrary
function of the energy rL, a(t, n, p)|t=0 ’ L −3f(n2/L2) 1[n=p] for some
‘‘reasonable’’ function f. Summarizing, we are interested in obtaining a
linear Boltzmann equation on the (non-commuting) limit rd=limaQ 0

limLQ. r
L, a
d , in (2.8), (2.10), (2.9).

We end the presentation of the model with two comments.
Physically, the damping term accounts for elastic interactions of the

particles with an external bath of, typically, ions, atoms, phonons, photons,
etc. (see, e.g., [SSL], Chap. 7.3 for applications to light-matter interac-
tion). Under such interactions indeed, the off-diagonal terms of the density
matrix (i.e., the correlations between the energy levels) are exponentially
damped due to random changes of phases of the particle wave-functions,
while, simultaneously, the diagonal part is left unchanged due to the elastic
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character of the collisions (see also [Lo], [Boy], [NM]). In the most
general case, when both elastic and inelastic interactions are present, the
latter act on much longer time scales than the former. Consequently, the
decay of the off-diagonal terms of the density matrix by elastic collisions is
much quicker than that of the diagonal terms by inelastic collisions [NM].
The damping of the off-diagonal terms bears similarities with the so-called
‘‘Random Phase Approximation’’ [VH1,2,3], [Zw], [Kr], [Pr]. Also, the
effect of this damping term is similar to that of an average over random
variables like in [Sp1], [La], [HLW], [EY].

Finally, for the sake of completeness, me mention the following
lemma, the proof of which is given in Section 4 later. It states that the
damping term in (2.8) preserves the positivity of the density matrix. It
actually satisfies the stronger ‘‘Lindblad’’ property [Li].

Lemma 2.1. Assume (2.2). Then, the solution rL, a(t, n, p) to
(2.8) with initial data rL, a(t, n, p)|t=0 satisfying (2.10) is unique in
C0(Rt; l2(Z

6
n, p)). Besides, for all non-negative values of time t \ 0,

rL, a(t, n, p) is a hermitian, positive, and trace-class operator acting on
l2(Z3). In particular, we have, for all t \ 0,

rL, a
d (t, n) \ 0 and rL, a

nd (t, n, p)=(rL, a
nd (t, p, n))*. (2.11)

2.2. Elimination of the Non-Diagonal Part

We wish to derive the Pauli master equation for the occupation
number rL, a

d (t, n) in the asymptotic limits LQ., aQ 0, starting from the
coupled system (2.8) on rL, a

d and rL, a
nd . As formally observed in [Zw], [Pr],

it is actually possible to write a closed equation on rL, a
d before any scaling

limit. Following [Ca1], the next theorem gives the explicit form of the
equation on rL, a

d . Its proof is deferred to Section 4.

Theorem 2.1. Assume (2.2). Let rL, a
d (t, n), rL, a

nd (t, n, p) be the
unique solution to the rescaled system (2.8) with initial data given by
(2.10). Then, for positive values of time, t \ 0, rL, a

d (t, n) satisfies the
following closed equation of Boltzmann-type,

“tr
L, a
d (t, n)=C

+.

l=1
l l+1(QL, a

l r
L, a
d )(t, n), (2.12)
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where the ‘‘damped collision operators’’ QL, a
l are given by,

(QL, a
l r

L, a
d )(t, n)

=
T

(2pL)3(l+1) (−2R) C
e1,..., el

C
k1,..., kl

F
u1,..., ul

(−1) ẽ1+· · ·+ẽl

× exp 1 i (n+e1k1)2−(n− ẽ1k1)2

L2 u1 −au1 2

× exp 1 i (n+e1k1+e2k2)2−(n− ẽ1k1 − ẽ2k2)2

L2 u2 −au2 2

× · · · ×

× exp 1 i (n+e1k1+· · ·+elkl)2−(n− ẽ1k1 − · · · − ẽlkl)2

L2 ul −aul 2

×5 iV1 1 k1

L
265 iV1 1 k2

L
26 · · ·5 iV1 1 kl

L
265 iV1* 1 k1+k2+· · · kl

L
26

×rL, a
d (t−T −1(u1+u2+· · ·+ul), n+e1k1+e2k2+· · ·+elkl). (2.13)

Here and in the sequel, R denotes the real part of a complex number. Also,
the sums ;e1,..., el ;k1,..., kl carry over the variables (e1,..., el) ¥ {0, 1} l and
(k1,..., kl) ¥ (Z3) l such that,

k1 ] 0, k1+k2 ] 0, ..., k1+k2+· · ·+kl ] 0, (2.14)

and we have made the convention,

-j=1,..., l ẽj=(1− ej)=1 or 0. (2.15)

Finally, the integrals >u1,..., ul carry over the set,

0 [ u1 [ Tt, 0 [ u2 [ Tt−u1, ..., 0 [ ul [ Tt−u1 − · · · −ul−1. (2.16)

Moreover, the first collision operator QL, a
1 (case l=1 above) has the more

explicit value,

l2(QL, a
1 r

L, a
d )(t, n)=2

l2

(2pL)6
F
Tt

u=0
C
k ] 0

exp(−au) cos 1 n
2−k2

L2 u2

×|V1 |21n−k
L
2 [rL, a

d (t−T −1u, k)−rL, a
d (t−T −1u, n)] du.

(2.17)
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Remarks. 1. The system (2.12)–(2.13) is a linear Boltzmann-like
equation with memory in time, of the form (1.1). The typical ‘‘gain-loss’’
structure of the right-hand-side of (2.12)–(2.13) is particularly transparent
on the first collision operator l2QL, a

1 , in spite of the fact that the (time
dependent) ‘‘scattering rate,’’

2
l2

(2pL)6
exp(−au) cos 1 n

2−k2

L2 u2 |V1 |2 1 n−k
L
2 , (2.18)

is not positive. More generally, each term l l+1QL, a
l r

L, a
d describes how the

occupation numbers rL, a
d (t, n) are affected by (l+1) consecutive interac-

tions with the potential V, so that the expansion ;l l
l+1QL, a

l is also a
power series in V. Obviously, its structure could be illustrated by means of
a Feynman diagram.

2. We can readily observe that, for fixed t, we have the following
bound on the right-hand-side of (2.12),

||l l+1QL, a
l r

L, a
d ||l2n [ T 5 2l

(2pL)3
6 l+1 T l |t| l

l!
5>(2pL) −3 V1 1 k

L
2>

l1k

6 l

×>(2pL) −3 V1 1 k
L
2>

l.k

||rL, a
d (t, n)||l2n ,

1use that F t

u1=0
· · · F

t−u1− · · · −ul−1

ul=0
1 du1 · · · dul=t l/l!2

[ 5 ClTt
L3
6 l+1 1

l!
||rL, a(t, n, p)||l2n, p

(for some constant C, thanks to (2.2)),

[ 5 ClTt
L3
6 l+1 1

l!
C −(t),

for some time dependent functionC −(t), becauserL, a(t) ¥ C0(l2) (Lemma2.1).
Obviously, this is enough to give a rigorous meaning to the series involved
in Theorem 2.1, at least for fixed values of the scaling parameters T and L.

2.3. A Formal Investigation of the Infinite Volume Limit in the

Case of Zero Damping

We are interested in the infinite volume limit (LQ+.) in
(2.12)–(2.13) when the damping is set to zero. On the one hand, we describe
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the main scaling properties of Eqs. (2.12)–(2.13), which lead to thinking
that the direct and formal limit LQ. in (2.12)–(2.13) with a — 0 could give
the Quantum Boltzmann equation. Simultaneously, we indicate that this
rough and formal limit cannot be made rigorous.

To simplify the presentation we restrict ourselves to the leading order
term namely, “tr

L
d=l

2QL
1r

L
d+O(l3), with vanishing damping, i.e.,

˛ “trL
d(t, n)=2Tl2(2pL) −6 F

t

u=0
C
k ] 0

cos 1 n
2−k2

L2 u2

×|V1 |2 1 n−k
L
2 [rL

d(t−u, k)−rL
d(t−u, n)] du+O(l3),

rL
d(t=0, n)=

1
(2pL)3

r0
d
1 n
L
2 . (2.19)

We first observe that formula (2.19) ressembles the following basic
formula, valid for all ‘‘smooth’’ functions k, L −N ;k ¥ Z

N k(k/L)||QLQ.

>k ¥ R
N k(k) dk, but the factor (2pL) −6 in front of the sum ;k is too strong,

since the vector k belongs to the 3-dimensional space only. Therefore, the
low-density scaling T=(2pL)3 is natural in (2.19). With this rescaling in
time we obtain indeed,

˛ “trL
d(t, n)=2l2(2pL) −3 F

(2pL)3 t

u=0
C
k ] 0

cos 1 n
2−k2

L2 u2 |V1 |2 1 n−k
L
2

×5rd 1 t−
u

(2pL)3
, k2−rd 1 t−

u
(2pL)3

, n26 du+O(l3),

rL
d|t=0(n)=(2pL) −3 r0

d(n/L). (2.20)

If we now try to perform the infinite volume limit on (2.20), three distinct
phenomena take place, at least formally:

1. The model should converge towards a model where
;k ( · · · )(k/L, n/L) is replaced by >k ( · · · )(k, n) dk

(2p)3
as LQ., and with the

initial data in (2.20) simply replaced by rd |t=0=(2p) −3 r0
d(n).

2. The time integration u ¥ [0, t] in the original model (2.12)–(2.13)
has become, after rescaling in time, u ¥ [0, (2pL)3t]. Therefore, for positive
values of time t (this is where time irreversibility appears), the limit
LQ+. in (2.20) should give rise to an integral over the positive real line,
>+.u=0 · · · .
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3. The factor rL
d(t−T −1u, n) in the original equation has become

rL
d(t−

u
(2pL)3

, n) and should converge towards rd(t, n) in the limit LQ+..
In particular, the infinite volume limit seems to transform an equation with
memory in time into a Boltzmann equation without memory in time.

For all these reasons, the infinite volume limit LQ. in (2.20) for-
mally gives the asymptotic behaviour,

“trd(t, n) ’ 2l2 F
+.

0
F
R
3
cos([n2−k2] u)

× |V1 |2 (n−k) [rd(t, k)−rd(t, n)]
dk
(2p)3

du+O(l3). (2.21)

In particular, the time integral >+.u=0 · · · in (2.21) has a meaning as an
oscillatory integral, and (2.21) gives (see Lemma 3.1 and the subsequent
remarks),

“trd(t, n) ’ 2pl2 F
R
3
d(n2−k2) |V1 |2 (n−k)[rd(t, k)−rd(t, n)]

dk
(2p)3

+O(l3),
(2.22)

which is precisely the Quantum Boltzmann equation that we are looking
for.

The first two steps cannot be justified because they involve the trans-
formation of a discrete series into an oscillatory integral. Indeed, the notion
of oscillatory integral heavily relies on the fact that the k, n variables are
continuous. Moreover, it can be proved [CP1,2] that, at least in dimension
one as well as in large dimensions (d \ 3), this formal analysis is actually
false, and the limiting equation remains reversible. This is the reason of our
introduction of the damping variable a. This is also the reason why, in
previous works, expectation values over random phases were considered
[Sp1], [La], [HLW], [EY].

3. STATEMENT OF THE THEOREMS

3.1. The Rigorous Convergence Results

We are now able to describe the asymptotics LQ+., aQ 0 in
Theorem 2.1. We begin with some notations.

402 Castella



Definition 3.1. (i) For any D \ 0, we define the following spaces
of test functions,

TD(RN) :={Y(n) ¥ C0(RN) s.t. OnPD Y(n) ¥ L.(RN) }, (3.1)

where we use the usual notation, OnP :=(1+n2)1/2. In the sequel, TD(RN)
will often be written in short TD, without refering to the actual dimension
of the underlying space RN. The space TD is a Banach space, and its norm
is given by,

||Y||TD
:=||OnPD Y(n)||L.. (3.2)

(ii) For any D \ 0, we define,

SD(RN) :={Y(n) ¥ C0(RN) s.t. OnPa O“nP
b Y(n) ¥ C0(RN), -0 [ a, b [ D},

(3.3)

where as usual, O“nP :=(1−Dn)1/2. The space SD is a Banach space, and its
norm is given by,

||Y||SD
:= C

D

a, b=0
||OnPa O“nP

b Y(n)||L.. (3.4)

Using these notations, we shall assume throughout the paper that the
profiles r0

d and V1 (the data of the problem) satisfy,

r0
d(n) ¥TD, V1(n) ¥S2D, for some large (but fixed) D, say D \ 4. (3.5)

Also, we pick up a coupling parameter l satisfying, |l| [ l0, where l0 is
some small constant, whose actual value only depends on the norms
||r0

d(n)||TD
and ||V1(n)||S2D

, but it does not depend on L nor on a.
We are now in position to state the three main theorems of the present

paper.

Theorem 3.1 (A priori bounds and existence of weak limits).

Let rL, a
d (t, n) and rL, a

nd (t, n, p) be the unique solutions to (2.8) in C0
t(l

2
n) and

C0
t(l

2
n, p) respectively. Assume that the initial datum satisfies (2.10), and the

potential satisfies (2.2), with profiles r0
d and V1 satisfying (3.5). Then the

following holds.
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(i) For any t \ 0, the following a-priori estimates hold for the
diagonal part,

||rL, a
d (t, n)||l1n [ C (preservation of trace), (3.6)

||rL, a
d (t, n)||l.n [

C
L3 (maximum principle), (3.7)

||rL, a
d (t, n)||l2n [

C
L3/2 (interpolation), (3.8)

where the constant C is of the form,

C :=C(||r0
d(n)||TD

, ||V1(n)||S2D
), (3.9)

but C is independent of t and a, a convention that we shall use throughout
the paper. Also, the non-diagonal part satisfies, for any t \ 0,

||rL, a
nd (t, n, p)||l2n, p [

C
aL3 . (3.10)

(ii) Under the same circumstances, the following estimate on the
derivative in time “tr

L, a
nd holds, for any t \ 0,

F
t

s=0
||“tr

L, a
nd (s, n, p)||

2
l2n, p ds [

C
aL3 . (3.11)

(iii) Finally, the sequence rL, a
d (t) is uniformly differentiable in time,

in the sense that for any t \ 0,

||“tr
L, a
d (t, n)||l2n [

C
aL3/2 . (3.12)

(iv) Define now the distributions rL, a
d (t) and rL, a

nd (t) (denoted by the
same name for convenience) acting respectively on functions f(n) ¥ C.c (R

3)
and F(n, p) ¥ C.c (R

3×R3) through formulae,

OrL, a
d (t), fP :=C

n
rL, a

d (t, n) f 1 n
L
2 , (3.13)

OrL, a
nd (t), FP :=C

n, p
rL, a

nd (t, n, p) F 1
n
L
,
p
L
2 . (3.14)
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Then rL, a
d (t) and rL, a

nd (t) extend continuously to the spaces TD(R3) and
TD(R6) respectively, and, for any t \ 0, the following estimates hold,

|OrL, a
d (t), fP| [ C ||f(n)||TD(R

3), (3.15)

|O“tr
L, a
d (t), fP| [

C
a
||f(n)||TD(R

3), (3.16)

|OrL, a
nd (t), FP| [

C
a
||F(n, p)||TD(R

6). (3.17)

In particular, up to extracting subsequences, the distributions rL, a
d (t) and

rL, a
nd (t) both possess weak limits as LQ., denoted by rad(t) and r

a
nd(t), so

that,

rL, a
d (t)||QLQ. rad(t) in C0(R+

t ; [TD(R3)]*-weak*), (3.18)

“tr
L, a
d (t)||QLQ. “tr

a
d(t) in [L1(R+

t ;TD(R3))]*-weak*, (3.19)

rL, a
nd (t)||QLQ. rand(t) in [L1(R+

t ;TD(R6))]*-weak*. (3.20)

Furthermore, rad(t) possesses in turn a weak limit as aQ 0, say rd(t), so
that,

rad(t)||QLQ 0 rd(t) in [L1(R+
t ;TD(R3))]*-weak*. (3.21)

Remarks. 1. The estimates (i) should be seen as scaling estimates in
terms of the parameter L. They tell us, in some sense, that for each t \ 0,
the sequences rL, a

d (t, n) and rL, a
nd (t, n, p) behave in the same way as sequences

of the form,

1
L3 u 1 t,

n
L
2 and

1
L6 v 1 t,

n
L
,
p
L
2 , (3.22)

respectively, where u(t, n) and v(t, n, p) should be, say, smooth profiles
defined on the whole space.

This fact is naturally obvious at time 0. On the more, if one explicitely
solves the Von-Neumann equation (2.8) using Neumann-series and
expressing rL, a

nd (t) as well as r
L, a
d (t) in terms of the initial datum, this is also
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formally the case at time t if we do not ask questions of convergence.
However the series built up in this way is very difficult to bound in a non-
trivial way, for we are not able to take advantadge of the many oscillations
present at the discrete level. We may indeed draw the following parallel:
when the continuous limit LQ. has been taken (see Theorem 3.2), we are
led to manipulate series of collision operators (see (3.26) and (3.27)) which
involve iterated oscillating integrals. The oscillations then allow to make
the series converge in a nice way, thanks to Lemma 3.1 below. Now
obviously this kind of argument is completely forbidden while performing
the continuous limit, where we still have to deal with discrete sums.

The part (i) of the theorem makes sure in this perspective that the
natural scaling properties in L of the solution to the Von-Neumann equa-
tion is actually propagated through time-evolution, without writing down
the above-mentionned Neumann series. This leads however to worse esti-
mates (ii) than expected, but fortunately these will be enough to take care
of the continuous limit.

Note finally that Theorem 3.1 is a priori false for negative values of
time.

2. As mentionned above, the estimate (ii) on the derivative in time
“tr

L, a
nd is somehow weaker than what one would expect, in two respects:

firstly, the estimate (ii) holds for averages in time, and we do not know
whether it holds true pointwise ; secondly, the scaling parameter L −3 on the
right-hand-side of (3.11) is much weaker than the L −6 one would expect for
profiles of the form (3.22). However, it is surprising that estimate (ii) hold
uniformly in t.

3. This theorem relies in an absolutely essential way on the following
features of the Von-Neumann equation under consideration: the Von-
Neumann equation (2.8) has the so-called Lindblad property (it preserves
the positivity of the density matrix—see Lemma 2.1) ; the initial data is
purely diagonal (see (2.10)); the equation on the diagonal part involves the
non-diagonal part only on the right-hand-side. We emphasize in this
respect that the l. bound (3.7) is very specific (it is actually a direct con-
sequence of the Lindblad property), and it is not at all a general feature of
Schrödinger-like equations.

Armed with the a priori bounds of Theorem 3.1, we are now able to
characterize the consecutive asymptotics LQ. and aQ 0, as follows.

Theorem 3.2 (Convergence as L _ /: The equation becomes

Markovian). Let rL, a
d (t) and rL, a

nd (t) be as in Theorem 3.1 and define their
weak limits rad(t) and r

a
nd(t) as stated in Theorem 3.1. Then the following

holds,
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(i) The weak limits satisfy the following system of equations,

“tr
a
d(t, n)=il F

R
3
[V1(n−k) rand(t, k, n)−V1(k−n) rand(t, n, k)]

dk
(2p)3

,

(3.23)

rand(t, n, p)=
il

(2p)3
F
+.

u=0
e[i(n2−p2)−a] uV1(p−n)[rad(t, p)−r

a
d(t, n)] du

+il F
+.

u=0
F
R
3
e[i(n2−p2)−a] u[V1(k−n) rand(t, k, p)

−V1(p−k) rand(t, n, k)]
dk

(2p)3
du, (3.24)

with initial datum,

rad(t, n)|t=0=r
0
d(n). (3.25)

The equations (3.23) and (3.24) hold between distributions belonging to
[L1(R+

t ;TD)]*.
(ii) The system (3.23)–(3.24) implies that the following Boltzmann

equation is satisfied,

“tr
a
d(t, n)=C

l \ 1
l l+1[Qalr

a
d](t, n), (3.26)

with initial datum (3.25), where the collision operators Qal are defined as,

[Qalr
a
d](t, n)

:=(2p) −3l (−2R) C
e1,..., el

F
R
3l
F
+.

u1=0
F
+.

u2=0
· · · F

+.

ul=0
(−1) ẽ1+· · ·+ẽl

× exp(i[(n+e1k1)2−(n− ẽ1k1)2] u1 −au1)

× · · · ×

× exp(i[(n+e1k1+· · ·+elkl)2−(n− ẽ1k1 − · · · ẽlkl)2] ul −aul)

×[iV1(k1)] · · · [iV1(kl)]×[iV1*(k1+· · ·+kl)]

×rad(t, n+e1k1+· · ·+elkl) dk1 · · · dkl. (3.27)
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Here, variables e1,..., el are as in Theorem 2.1. Also, the leading term in the
series (3.26) is,

l2[Qa1r
a
d](t, n)=2 F

R
3
F
+.

u=0
exp(−au) cos([n2−k2] u)

× |V1(n−k)|2 [rad(t, k)−r
a
d(t, n)]

dk
(2p)3

. (3.28)

(iii) The Eq. (3.26) makes sense weakly, when tested against test
functions f(n) ¥S2D(R3). More precisely, for any such f, we have,

O“tr
a
d(t), fP=C

l \ 0
l l+1Orad(t),

tQalfP, (3.29)

where tQalf denotes the formal adjoint of Q
a
l , defined as,

[ tQalf](t, n)

:=(2p) −3l (+2R) C
e1,..., el

F
R
3l
F
+.

u1=0
F
+.

u2=0
· · · F

+.

ul=0
(−1) e1+· · ·+el

× exp(i[(n+e2k2+· · ·+elkl)2−(n+k1+e2k2+· · ·+elkl)2] u1 −au1)

× exp(i[(n+e3k3+· · ·+elkl)2−(n+k1+k2+e3k3+· · ·+elkl)2] u1 −au1)

× · · · ×

× exp(i[n2−(n+k1+· · ·+kl)2] ul −aul)

×[iV1(k1)] · · · [iV1(kl)]×[iV1*(k1+· · ·+kl)]

×f(t, n+e1k1+· · ·+elkl) dk1 · · · dkl. (3.30)

Also, the following estimate holds,

l l+1 |Orad(t),
tQalfP| [ l

l+1CC l
0 ||V1(n)||

l+1
S2D

||f||S2D
, (3.31)

for some universal constant C0, together with some constant C of the form
(3.9). The estimate (3.31) implies the convergence of the series (3.29), at
least for l small enough. Also, the estimate (3.31) together with the equa-
tion (3.29) imply that rad(t) is actually uniformly (in a) bounded in the
space,

C1(R+
t ; [S2D]*-weak*),
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so that the weak convergence rad(t)Q rd(t) also holds in C0(R+
t ;

[S2D]*-weak*).

Theorem 3.3 (Convergence as a _ 0: Obtaining the Quantum

Boltzmann equation). Let rad(t) be as in Theorem 3.2 and define its
weak limit rd(t) as stated in Theorem 3.1. Then the following holds,

(i) The following Boltzmann equation is satisfied,

“trd(t, n)=C
l \ 1
l l+1[Qlrd](t), (3.32)

with initial datum,

rd(t, n)|t=0=r
0
d(n), (3.33)

where the collision operators Ql are defined as,

[Qlrd](t, n) :=(2p) −3l (−2R) C
e1,..., el

F
R
3l
F
+.

u1=0
F
+.

u2=0
· · · F

+.

ul=0
(−1) ẽ1+· · ·+ẽl

× exp(i[(n+e1k1)2−(n− ẽ1k1)2] u1)

× · · · ×

× exp(i[(n+e1k1+· · ·+elkl)2−(n− ẽ1k1 − · · · ẽlkl)2] ul)

×[iV1(k1)] · · · [iV1(kl)]×[iV1*(k1+· · ·+kl)]

×rd(t, n+e1k1+· · ·+elkl) dk1 · · · dkl. (3.34)

Here, variables e1,..., el are as in Theorem 2.1. The Eqs. (3.32), (3.33) and
(3.34) hold between distributions belonging to, say, L.(R+

t ; [S2D]*-weak*).
(ii) Also, the leading term in the series (3.32) is,

l2[Q1rd](t, n)=2pl2 F
R
3
d(k2−n2) |V1(n−k)|2 [rd(t, k)−rd(t, n)]

dk
(2p)3

,

(3.35)

as predicted by the Fermi Golden Rule.

(iii) The Eq. (3.26) makes sense weakly, when tested against test
functions f(n) ¥S2D(R3). More precisely, for any such f, we have,

O“trd(t), fP=C
l \ 0
l l+1Ord(t), tQlfP, (3.36)
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where tQlf denotes the formal adjoint of Ql (see (3.30)), and where the
following estimate holds,

l l+1 |Ord(t), tQlfP| [ l l+1CC l
0 ||V1(n)||

l+1
S2D

||f||S2D
, (3.37)

for some universal constant C0, together with some constant C of the
form (3.9).

Remark. Firstly, Eqs. (3.26) and (3.32) are indeed of the form (1.2)
and (1.3) respectively. Secondly, it can be proved that the full series in the
potential which defines the cross-section in (3.32) is nothing else than the
celebrated Born series. By this, we mean that the Eq. (3.32) can be put
under the form,

“trd(t, n)=2p F
R
3
d(k2−n2) b(k, n)[rd(t, k)−rd(t, n)] dk, (3.38)

where the coefficient b(k, n) is given by the Born series,

b(k, n)=l2 |V1 |2 (n−k)−2l3I F
R
3

V1(n−k) V1(k−kŒ) V1(kŒ−n)
k −2−n2+i0

dkŒ+· · ·
(3.39)

This point is not obvious from the expression (3.34). The proof will be
detailed in a future work [Ca2].

3.2. An Oscillatory Integral Estimate

Before turning to the proofs of the above theorems, we state the key
estimate which allows to pass to the limit LQ. and aQ 0 in (2.8). This
estimate allows to control the oscillations produced by the free Hamilto-
nian so as to recover the oscillatory integrals in Theorem 3.3 and in par-
ticular the Dirac mass in energy in formula (3.35) as aQ 0. Also, since our
method relies on the iteration of Duhamel’s formula and leads therefore
to oscillatory integrals in large dimensions, it allows to control the growth
of the oscillatory integrals with the dimension. Both aspects are of key
importance (see Remarks 2 and 3 later). This lemma heavily relies on
the commutation structure i“tr̃=(−Dx+Dy) r̃+· · · of the original Von-
Neumann equation.

Lemma 3.1 (Oscillatory Integrals with quadratic phases in

large dimensions). Let k(n) satisfy k ¥ L.(R3). Then, the collision
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kernel Ql(k)(n) as defined in Theorem 3.3 is well defined and acts contin-
uously on the Sobolev space W4,.(R3). More precisely, for any choice of
the test function f ¥W4,.(R3), and for any choice of e :=(e1,..., el) as in
Theorem 2.1, we have,

(i) The following oscillatory integral makes sense,

O eQl(k), fP :=F
+.

u1=0
· · · F

+.

ul=0
F
R
3(l+1)

exp(i[(n+e1k1)2−(n− ẽ1k1)2] u1)

× exp(i[(n+e1k1+e2k2)2−(n− ẽ1k1 − ẽ2k2)2] u2)

× · · · ×

× exp(i[(n+e1k1+· · ·+elkl)2−(n− ẽ1k1 − · · · − ẽlkl)2] ul)

×V1(k1) V1(k2) · · ·V1(kl) V1*(k1+· · ·+kl)

×k(n+e1k1+· · ·+elkl) f(n) dn dk1 · · · dkl du1 · · · dul.

(ii) Moreover, the integral defining O eQl(k), fP converges absolutely
in the variables u1,..., ul. In particular,

lim
aQ 0+

O eQal(k), fP

:= lim
aQ 0+

F
+.

u1=0
· · · F

+.

ul=0
F
R
3(l+1)

exp(i[(n+e1k1)2−(n− ẽ1k1)2] u1 −au1)× · · · ×

× exp(i[(n+e1k1+· · ·+elkl)2−(n− ẽ1k1 − · · · − ẽlkl)2] ul −aul)

×V1(k1) · · ·V1(kl) V1*(k1+· · ·+kl) k(n+e1k1+· · ·+elkl) f(n)

=O eQl(k), fP.

(iii) Finally, the following exponential bound holds, for some uni-
versal constant C0,

|O eQl(k), fP| [ C l
0 ||V1 ||

l+1
W8, 1(R3) ||k||L.(R3) ||f||W4,.(R3), (3.40)

and the same bound (with a different absolute constant) obviously holds
for OQl(k), fP as well, since Ql=;e

eQl, where the sum carries over all
possible sequences e.
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Remarks. 1. The method of proof given below allows to establish
various estimates of the same kind than (3.40). For instance, we may
mention without proof the estimate,

|O eQl(k), fP| [ C l
0 ||V1 ||

l+1
W8, 1(R3) 5W8,.(R3) ||k||Mb(R

3) ||f||W4,.(R3), (3.41)

whereMb stands for the space of bounded measures.

2. The idea of the proof is the following: all the above quantities are
of the form,

F
R
3(l+1)

F
+.

u1,..., ul=0
exp[iqu1,..., ul(x)] F(x) dx du1 · · · dul, (3.42)

where qu1,..., ul(x) is a quadratic form in x, whose coefficients depend on
u1,..., ul, and the difficulty stems from the need to integrate (3.42) up to
u1=·· ·=ul=.. By the stationnary phase formula, we know that the
quantity > exp[iqu1,..., ul(x)] F(x) dx decays like |det(qu1,..., ul)|

−1/2 at infinity
as a function of the u-variables, at least if the function F is sufficiently
smooth. Hence the control of quantities like (3.42) reduces to controlling
that det(qu1,..., ul) grows fast enough at infinity, as well as to controlling the
number of derivatives needed by the use of the stationnary phase formula.

3. The bound (3.40) is important in two respects. Firstly, the left-
hand-side is uniformly bounded using a fixed (independent of l) number of
derivatives in V1 , f, although the singularity created by the oscillatory
exponentials apparently grows with l. In other words, the oscillatory
integrals above do not act as iterated derivatives on f, but rather as distri-
butions of fixed order. Secondly, the constant involved in (3.40) grows
geometrically with l. Both points are crucial since the case of iterated deri-
vatives could lead to a growth of O eQl(k), fP like l! (hence to diverging
series).

4. Up to some change of variables, one can see this lemma as a defi-
nition of distributions like,

(n2−k2
1+i0) −1×(n2−k2

2+i0) −1× · · · ×(n2−k2
l+i0) −1 (3.43)

in D −(R3(l+1)). Indeed, Lemma 3.1 should be compared with the well-known
formula, valid in D −(R),

F
+.

s=0
exp(isx) ds=+pd(x)+iv.p.(1/x)=−i(x+i0) −1.
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However, the definition of distributions like (3.43) is not in general a con-
sequence of the usual theorems about the prolongation and composition of
homogeneous distributions (see [Hö]), nor it is a consequence of the usual
theorems about the composition and products of distribution with ‘‘well-
behaved’’ wave-fronts. This is due to the fact that the singularity near the
origin n2=k2

1=·· ·=k2
l=0 and near all the axes is too severe. In particu-

lar, the definition of such distributions a priori involves products of Dirac
masses, a forbidden operation. The above lemma shows that this is fortu-
nately not the case, and this relies on the fact that the +i0 and −i0 occur
at the right places due to the specific commutator structure of the original
equation (see (4.20) and the last step of the proof of this lemma). This is
formally in analogy with the well-known fact that the distribution
(x+i0) −2 is well-defined, whereas the product (x+i0) −1 (x−i0) −1 does
not make sense.

5. In the particular case l=1, we can identify the oscillatory integrals
as,

R F
+.

u=0
F
R
6
exp(i[n2−k2] u) k(n, k) dn dk du=p F

R
6
d(n2−k2) k(n, k) dn dk,

(3.44)

where the distribution d(n2−k2) has the usual meaning (see [Hö]).
5. The proof below goes through when the variables n, k1, etc. in

Lemma 3.1 belong to the d-dimensional space Rd, for any dimension d \ 3
(see (4.25)), up to replacing ||V1 ||W8, 1(R3) by ||V1 ||W2(d+1), 1(Rd), and ||f||W4,.(R3) by
||f||Wd+1,.(Rd). We mention in passing the obvious imbedding
S8(R3) …W8, 1(R3).

4. PROOFS

4.1. Proof of Lemma 2.1: Positivity of the Density Matrix

Equation (2.5) is linear. For fixed time, we can obviously bound the
l2(Z6

n, p)-norm of the right-hand-side of (2.5) by,

|| · · · ||l2 [ 2 ||(2pL) −3 V1(k/L)||l1(Z3
k) ||r(t, n, p)||l2(Z6

n, p),

The quantity ||(2pL) −3 V1(k/L)||l1(Z3
k) is obviously bounded for fixed L if V

satisfies (2.2). Also the l2-norm of r(t, n, p)|t=0 is bounded initially. Indeed,

||r(t, n, p)|t=0 ||l2n, p [ ||(2pL) −3 r0
d(n/L)||l2n,
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and this last quantity is bounded for fixed L since r0
d decays nicely

(assumption (2.10)). All this clearly proves the first part of the lemma
(existence and uniqueness in C0(l2)).

The second part of the lemma is proved by observing that the system
(2.8) is of Linblad-form. More precisely, let r̃(t, x, y) be the inverse Fourier
transform of r(t, n, p). Then r̃ satisfies,

T −1
“tr̃(t, x, y)=−i(−Dx+Dy) r̃(t, x, y)

− il(V(x)−V(y)) r̃(t, x, y)+aF( r̃)(t, x, y), (4.1)

where the linear operator F reads,

F( r̃)=1
2 C
n ¥ Z

2Lnr̃L
g
n−Lg

nLnr̃− r̃L
g
nLn, (4.2)

up to defining the linear operators Ln, and their hermite-conjugates Lg
n,

acting on L2([0, 2pL]3), as,

Ln(x, y)=
exp(inx/L)
(2pL)3/2

×
exp(− iny/L)

(2pL)3/2
,

i.e., to each function f(x) ¥ L2([0; 2pL]3), Ln associates,

(Lnf)(x) :=F
y ¥ [0; 2pL]3

Ln(x, y) f(y) dy.

We clearly have Ln=Lg
n. Note that we do not give any details about the

problems of convergence in the series defining F. We leave the simple
limiting argument to the reader, which involves a truncated sum and then
goes to the infinite series defining F. The proof of (4.2) is obtained by
observing that (here, F denotes Fourier transform on the Torus
(R/2pL)3),

F( r̃)(t, x, y)=−F −1[r(t, n, p) 1(n ] p)]

=F −1[r(t, n, p) 1(n=p)−r(t, n, p)]

=C
n
Ln(x, y) F

(a, b) ¥ R
6
Ln(b, a) r̃(t, a, b) da db− r̃(t, x, y),

and formula (4.2) follows.
This proves that equation (4.1) (or: (2.8)) is of Lindblad form, and in

particular, the density matrix r̃ remains positive (as an operator) for all
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non-negative values of time [Li]. This implies the non-negativity of rd for
t \ 0. The hermitianity is easily seen by uniqueness. L

4.2. Proof of Theorem 2.1: A Closed Equation on the Diagonal Part

of the Density Matrix

We follow the computations in [Ca1].

First Step. Getting an Abstract Equation for rL, ad

We first rewrite the original system (2.8) on rL, a
nd , r

L, a
d in the following

form,

“tr
L, a
nd (t, n, p)=+i

n2−p2

L2 rL, a
nd +−arL, a

nd

+(ArL, a
d )(t, n, p)+(BrL, a

nd )(t, n, p), (4.3)

“tr
L, a
d (t, n, p)=(BrL, a

nd )(t, n, n), (4.4)

where we have introduced the following notations,

˛ (ArL, a
d )(t, n, p)=+

ilT
(2pL)3

V1 1 p−n
L
2 [rL, a

d (t, p)−rL, a
d (t, n)],

(BrL, a
nd )(t, n, p) (4.5)

=+
ilT

(2pL)3
C
k ] p

5V1 1 k−n
L
2 rL, a

nd (t, k, p)−V1 1 p−k
L
2 rL, a

nd (t, n, k)6 .

Now, we first use (4.3) in order to compute rL, a
nd as an explicit function of

rL, a
d , and then insert the corresponding formula for rL, a

nd into the right-hand-
side of (4.4). For that purpose, we introduce the following operator,

(SrL, a
nd )(t, n, p)=F

Tt

0
exp 1+i

n2−p2

L2 s−as2 rL, a
nd (t−T −1s, n, p) ds, (4.6)

and the same formula when rL, a
nd is replaced by any function v(t, n, p).

Obviously here S stands for ‘‘Schrödinger,’’ since for any function
v(t, n, p), the associated function (Sv)(t, n, p) :=w(t, n, p) is the unique
solution to the equation,

˛T −1
“tw(t, n, p)=+i

n2−p2

L2 w(t, n, p)−aw(t, n, p)+v(t, n, p),

w(t=0, n, p)=0.
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With these notations, we easily integrate (4.3), using the fact that rL, a
nd

vanishes initially, and obtain,

rL, a
nd (t, n, p)=(SArL, a

d )(t, n, p)+(SBrL, a
nd )(t, n, p). (4.7)

Therefore, iterating this formula gives the following Neumann series for
rL, a

nd ,

rL, a
nd (t, n, p)=C

+.

l=0
([SB] l (SArL, a

d ))(t, n, p). (4.8)

We now insert this expression into the equation (4.4), and obtain,

“tr
L, a
d (t, n)=C

+.

l=0
(B[SB] l (SArL, a

d ))(t, n, n)=C
+.

l=1
([BS] l (ArL, a

d ))(t, n, n).
(4.9)

This is the abstract form of Theorem 2.1. Obviously, we have used here the
fact that “tr

L, a
d depends on rL, a

nd only in (4.4) (see above).

Second Step. Getting an Explicit Equation on rL, ad

It remains now to translate (4.9) into a more explicit formula. For that
purpose, we rewrite the definition of the operator B (see (4.5)) into the
following form,

(BrL, a
nd )(t, n, p)=+

ilT
(2pL)3

C
k1

V1 1 k1

L
2 [rL, a

nd (t, n+k1, p) 1(n+k1 ] p)

−rL, a
nd (t, n, p−k1) 1(n ] p−k1)]

=
lT

(2pL)3
C
e1, k1

(−1) ẽ1 5 iV1 1 k1

L
26 rL, a

nd (t, n+e1k1, p− ẽ1k1)

×1(n+e1k1 ] p− ẽ1k1). (4.10)

Here, the same convention as in Theorem 2.1 has been used, namely,

e1=0 or 1, ẽ1=1− e1.

We iterate formula (4.10), and use (4.6), in order to compute the explicit
value of each term [BS] l (ArL, a

d )(t, n, n) in (4.9). This easily gives,

“tr
L, a
d (t, n)=C

+.

l=1
(Q −lr

L, a
d )(t, n), (4.11)
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with,

(Q −lr
L, a
d )(t, n)

=T 5 l

(2pL)3
6 (l+1)

C
e1,..., el

C
k1,..., kl

F
u1,..., ul

(−1) ẽ1+· · ·+ẽl

× exp 1 i (n+e1k1)2−(n− ẽ1k1)2

L2 u1 −au1 2

× exp 1 i (n+e1k1+e2k2)2−(n− ẽ1k1 − ẽ2k2)2

L2 u2 −au2 2

× · · · × exp 1 i (n+e1k1+· · ·+elkl)2−(n− ẽ1k1 − · · · − ẽlkl)2

L2 ul −aul 2

×5 iV1 1 k1

L
265 iV1 1 k2

L
26 · · ·5 iV1 1 kl

L
26×5 iV1 1 −k1+k2+· · · kl

L
26

×[rL, a
d (t−T −1(u1+u2+·· ·+ul), n− ẽ1k1 − ẽ2k2 − · · · − ẽlkl)

−rL, a
d (t−T −1(u1+u2+· · ·+ul), n+e1k1+e2k2+· · ·+elkl)]. (4.12)

On the more, iterating also (4.6), and the characteristic function
1(n+e1k1 ] p− ẽ1k1) appearing in (4.10), we easily observe that the sums
;e1,..., el ;k1,..., kl and integrals >u1,..., ul in (4.12), carry over the sets (2.14),
(2.15), (2.16) given in Theorem 2.1.

Last Step. Getting the Theorem

As a last step, we finally transform (4.12) into the form (2.12),
(2.13) given in Theorem 2.1. We first observe that, due to the factor
[rL,a

d (t−T −1(u1+· · · ),n− ẽ1k1 − · · · )−rL,a
d (t−T −1(u1+· · · ),n+e1k1+· · · )]

in (4.12), the term Q −lr
L, a
d naturally splits into two terms,

Q −lr
L, a
d =Q (1)

l r
L, a
d −Q (2)

l r
L, a
d , (4.13)

using the obvious notation. On the other hand, due to (2.2), V is real-
valued, so that,

-k, V1(−k)=V1*(k),

and we are able to replace in (4.12),

V1 1 −k1+k2+· · · kl

L
2=V1* 1 k1+k2+· · · kl

L
2 .
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This, together with the fact that rL, a
d is real-valued (see Lemma 2.1), yields,

(Q (1)
l r

L, a
d )(t, n)

:=T 5 l

(2pL)3
6 (l+1)

C
e1,..., el

C
k1,..., kl

F
u1,..., ul

(−1) ẽ1+ẽ2+· · ·+ẽl

× exp 1 i (n+e1k1)2−(n− ẽ1k1)2

L2 u1 −au1 2

× exp 1 i (n+e1k1+e2k2)2−(n− ẽ1k1 − ẽ2k2)2

L2 u2 −au2 2

× · · · ×

× exp 1 i (n+e1k+ · · ·+elkl)2−(n− ẽ1k1 − · · · − ẽlkl)2

L2 ul −aul 2

×5 iV1 1 k1

L
265 iV1 1 k2

L
26 · · ·5 iV1 1 kl

L
26×5 iV1* 1 k1+k2+· · · kl

L
26

×rL, a
d (t−T −1(u1+u2+· · ·+ul), n− ẽ1k1 − ẽ2k2 − · · · − ẽlkl)

=(perform the change of variables ẽj Q ej, and kj Q −kj,

for all 1 [ j [ l, and use V1(−k)=V1*(k)),

=−1T 5 l

(2pL)3
6 (l+1)

C
e1,..., el

C
k1,..., kl

F
u1,..., ul

(−1) ẽ1+ẽ2+· · ·+ẽl

× exp 1 i (n+e1k1)2−(n− ẽ1k1)2

L2 u1 −au1 2

× exp 1 i (n+e1k1+e2k2)2−(n− ẽ1k1 − ẽ2k2)2

L2 u2 −au2 2

× · · · ×

× exp 1 i (n+e1k1+· · ·+elkl)2−(n− ẽ1k1 − · · · − ẽlkl)2

L2 ul −aul 2

×5 iV1 1 k1

L
265 iV1 1 k2

L
26 · · ·5 iV1 1 kl

L
26×5 iV1* 1 k1+k2+· · · kl

L
26

×rL, a
d (t−T −1(u1+u2+· · ·+ul), n+e1k1+e2k2+· · ·+elkl)2

g

=−(Q (2)
l r

L, a
d (t, n))*.
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Therefore, equation (4.12) has the form,

“tr
L, a
d =C

+.

l=1
Q −lr

L, a
d =C

+.

l=1
Q (1)

l r
L, a
d −Q (2)

l r
L, a
d =C

+.

l=1
−(Q (2)

l r
L, a
d )*−Q (2)

l r
L, a
d

=−2R C
+.

l=1
Q (2)

l r
L, a
d .

This is exactly the formula given in Theorem 2.1. This ends the proof. L

4.3. Proof of Lemma 3.1: Controlling Oscillatory Integrals

The proof is given in three steps.

First Step. Changing Variables

Let us look at the first exponential in Lemma 3.1. If e1=0, its argu-
ment involves the quantity n2−(n−k1)2, in which case one should change
variables N=n, K1=n−k1, and the exponential becomes,

exp(i[N2−K2
1] u1). (4.14)

On the other hand, if e1=1, the argument in the first exponential is
(n+k1)2−n2, and one should change variables N=n, K1=n+k1 and get,

exp(i[K2
1−N2] u1). (4.15)

In order to fix the ideas, let us consider we are in the case e1=0.
We now come to the second exponential. If e2=0, we change

variables, K2=n−k1 −k2, and the first two exponentials give,

exp(i[N2−K2
1] u1) exp(i[N

2−K2
2] u2), (4.16)

while in the case e2=1, we come up against the change of variables
K2=n+k2 and obtain,

exp(i[N2−K2
1] u1) exp(i[K

2
2−K2

1] u2). (4.17)

Proceeding further gives therefore the following typical product of expo-
nentials, say,
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exp(i[N2−K2
1] u1) exp(i[K

2
2−K2

1] u2)

× exp(i[K2
3−K2

1] u3) exp(i[K
2
3−K2

4] u4) · · ·

=exp(+iN2u1) exp(− iK2
1[u1+u2+u3]) exp(+iK2

2u2)

× exp(+iK2
3[u3+u4]) exp(− iK2

4u4) · · · . (4.18)

Now let us decribe this procedure in the general case.
The linear change of coordinates needed in this approach obviously

depends on the values of e1,..., el in O eQl(k), fP, but its Jacobian has
always the value ±1 (its matrix is a triangle with ±1 on the diagonal).
Actually, the exact value of this linear change of variables is in any case,

N=n,

K1=n+e1k1 if e1=1, n− ẽ1k1 else,

K2=n+e1k1+e2k2 if e2=1, n− ẽ1k1 − ẽ2k2 else,

x

Kl=n+e1k1+e2k2+· · ·++elkl if el=1, n− ẽ1k1 − ẽ2k2 − ẽlkl else .

(4.19)

Also, and in any case, the change of variables (4.19) transforms the oscilla-
tory exponentials exp{iu1[(n+e1k1)2−(n+ẽ1k1)2]} · · · in the old variables
into the following typical oscillating exponential in the new variables,

exp{i[±N2(u1+u2+u3)±K2
1u1 ±K2

2u2 ±K3(u3+u4+u5)

±K2
4u4 ±K2

5(u5+u6) · · · ]}, (4.20)

or, in a more abstract form,

exp 3 i 5 ±N2(u1+· · ·+ui0)+C
i0−1

i=1
±K2

iui

±K2
i0(ui0+· · ·+ui1)+ C

i1−1

i=i0+1
±K2

iui ±K2
i1(ui1+· · ·+ui2)+· · · 64,

(4.21)

for some indices 1 [ i0 [ i1 [ · · · depending on the exact value of the e’s,
and where the signs ± in (4.20)–(4.21) have some unimportant value,
depending on the e’s as well.

We have now described the effect of the change of variables (4.19) on
the oscillating exponentials appearing in the definition of O eQl(k), fP.
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Before ending this first step, we now mention the effect of this change of
variables on the function V1(k1) · · ·V1(kl) V1*(k1+· · ·+kl) k(n+e1k1+
· · ·+elkl) f(n) appearing in O eQl(k), fP. It is straightforward to see that
this function becomes, in the new variables,

V1(N−K1) V1(K1 −K2) · · ·V1(Kl−1 −Kl) V1(Kl −N) k(N) f(N), (4.22)

if e=(e1,..., el)=(0,..., 0) (this is the so-called ‘‘gain-term’’ in the full colli-
sion kernel Ql=;e

eQl). If e ] (0,..., 0) (the ‘‘loss’’-terms), we recover the
typical value (say),

V1(N−K1) V1(N−K2) · · ·V1(Kl−1 −Kl) V1*(Ka −Kl) k(Ka) f(N), (4.23)

for some value of the index a, where, as in the gain term, each of the
variables N, K1,..., Kl appear twice as the argument of the function V1 , and
amongst these variables, one (and only one) of them appears also as the
argument of the test function k.

Again, the exact values of the indices in formula (4.23) depend on the
exact value of the sequence e, but the above described structure is present
for any e.

Second Step. Proving the Lemma when e1=e2= · · · =el=0—The
Gain Term

We are now led to studying the convergence of the integrals
O eQl(k), fP where the exponentials have the form (4.20) (or: (4.21)) above.

We begin by studying the easier case where e1=e2=·· ·=el=0.
In this case, as we explained in the first step above, the change of

variables (4.19) leads to studying,

O eQl(k), fP := F
+.

u1=0
· · · F

+.

ul=0
F
R
3(l+1)

exp(+iN2[u1+· · ·+ul])

× exp(− iK2
1u1) exp(− iK2

2u2) · · · exp(− iK2
lul)

×V1(N−K1) V1(K1 −K2) · · ·V1(Kl−1 −Kl) V1*(N−Kl)

×k(N) f(N) dN dK1 · · · dKl du1 · · · dul. (4.24)

Now we split the time integral > du1 · · · > dul according to the 2 l different
cases: u1 \ or [ 1, u2 \ or [ 1,..., ul \ or [ 1.

* On the set where u1, u2,..., ul are all [ 1, we observe that the corre-
sponding contribution to O eQl(k), fP is,
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[ C1 ||k||L.(R3) F
R
3(l+1)

|V1(N−K1) V1(K1 −K2) · · ·V1(Kl−1 −Kl)

×V1*(N−Kl) f(N)| dN dK1 · · · dKl,

for some universal constant C1, and therefore it is bounded by,

[ C1 ||V1 ||
l+1
L1(R3) ||k||L.(R3) ||f||L.(R3).

* If, say, u1 is \ 1, and all the other variables are [ 1, we use Parseval
formula in the K1 variable, and rely on the well-known formula,

F
x ¥ R

3
exp 1 i lx

2

2
2 f(x) dx=C2 F

t ¥ R
3
l −3/2 exp 1 −i

t2

2l
2 f̂(t) dt, (4.25)

for some universal constant C2. This gives that the corresponding contri-
bution to O eQl(k), fP is, for some other universal constant C3 related to C2,

=C3 F
+.

u1=1
F
1

u2=0
· · · F

1

ul=0
F
R
3(l+1)

exp(+iN2[u1+· · ·+ul])

×
exp 1+i

t2
1

u1
2

u3/2
1

× exp(− iK2
2u2) · · · exp(− iK2

lul)

×(FK1 Q t1
V1(N−K1) · · ·V1(Kl−1 −Kl) V1*(N−Kl) k(N) f(N))

×dN dt1 dK2 · · · dKl du1 · · · dul. (4.26)

Obviously, we can bound (4.26) by,

[ C3 ×F
+.

u1=1

du1
u3/2
1

||k||L.(R3) F
R
3(l+1)

|FK1 Q t1
V1(N−K1) · · ·V1(Kl−1 −Kl)

×V1*(N−Kl) f(N)| dN dt1 dK2 · · · dKl

[ C4 ||k||L.(R3) ×5 F
R
3
(1+|x|4) −1 dx6× F

R
3(l+1)

|(1−D2
K1
)[V1(N−K1)

×V1(K1 −K2) · · ·V1*(N−Kl) f(N)]| dN dK1 dK2 · · · dKl

[ C5 ||V1 ||
2
W4, 1(R3) ||V1 ||

l−1
L1(R3) ||k||L.(R3) ||f||L.(R3)

[ C6 ||V1 ||
l+1
W4, 1(R3) ||k||L.(R3) ||f||L.(R3). (4.27)

Here C3,..., C5 are universal constants.
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* If, say, u1 and u2 are \ 1, the other variables being [ 1, the same
method (Fourier transform in K1 and K2) obviously leads to bounding the
corresponding contribution to O eQl(k), fP by,

[ C7 ||k||L.(R3) F
R
3(l+1)

|(1−D2
K1
)(1−D2

K2
)[V1(N−K1) V1(K1 −K2) · · ·

· · ·V1*(N−Kl) f(N)]| dN dK1 · · · dKl

[ C8 ||k||L.(R3) ||V1 ||
3
W8, 1(R3) ||V1 ||

l−2
L1

R
3) ||f||L.(R3),

hence this is bounded by,

[ C8 ||k||L.(R3) ||V1 ||
l+1
W8, 1(R3) ||f||L.(R3).

* Continuing this procedure allows to bound all the contributions to
O eQl(k), fP, including the worst case where all the uj’s are \ 1. Indeed, in
this case we Fourier transform in K1,..., Kl, and obtain a bound like,

[ C l
9× F

+.

u1=1
· · · F

+.

ul=1
[u1u2 · · · ul] −3/2du1 · · · dul ||k||L.(R3)

×F
R
3(l+1)

|(1−D2
K1
) · · · (1−D2

Kl
)

× [V1(N−K1) · · ·V1*(N−Kl) f(N)]| dN dK1 · · · dKl

[ C l
10 ||k||L.(R3) ||V1 ||

l+1
W8, 1(R3) ||f||L.(R3).

Note that we never differentiate nor use the Parseval formula in the N
variable, hence we do not need differentiability properties of the function k.

Now, all the constants appearing while bounding O eQl(k), fP depend
geometrically on l, including the number of terms in which one is led to
split Il(k, f) (this number is 2 l). This gives the following bound on the gain
term (i.e., in the particular case e1=·· ·=el=0),

|O eQl(k), fP| [ C l
11 ||k||L.(R3) ||V1 ||W8, 1(R3) ||f||L.(R3), (4.28)

where C11 is some universal constant.
We emphasize the fact that this bound implies the corresponding

bound in Lemma 3.1, but it is actually much better an estimate. Indeed, the
bound (4.28) says that the operator eQl (in the case e1=·· ·=el=0) sends
L.(R3) into its dual continuously, whereas Lemma 3.1 implies a loss of
four derivatives.
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We finally mention that the absolute convergence in the u-variables of
the integrals defining eQl is an obvious consequence of the above compu-
tations (i.e., of the absolute convergence of >.1 u −3/2 du).

Last Step. The General Case—The Loss Terms

The method indicated above in the special case e1=·· ·=el=0 works
without any modification for any value of the numbers ej. However, the
bound on O eQl(k), fP given by this method in the case of the ‘‘loss’’-terms
differs from the one obtained in the case of the ‘‘gain’’-term (see (4.28)) in
that we shall now obtain a bound with loss of derivatives.

Indeed, for any value of the e’s we know from the first step above that
it is possible to change variables as in (4.19) so as to recover an oscillatory
integral involving on the one hand exponentials of the form (4.20) (or:
(4.21)), and on the other hand the particular structure (4.23) persists for the
non-oscillatory part of the integral.

In order to fix the ideas, let us now bound the typical quantity,

F
R
3(l+1)

F
+.

u1,..., ul=0
exp{i[N2u1 −K2

1(u1+u2)

+K2
2(u2+u3+· · ·+ul)−K2

3u3 − · · · −K2
lul]}

×V1(N−K1) V1(K2 −N) V1(K1 −K3) V1(K3 −K4) · · ·V1(Kl−1 −Kl) V1(Kl −K2)

×k(K2) f(N) dN dK1 · · · dKl du1 · · · dul. (4.29)

(This quantity corresponds to e1=0, e2=1, e3=·· ·=el=0). Following
the procedure used in the second step above, we may use the Parseval
formula in the K1, K3,..., Kl variables (and not in K2, which is the variable
appearing as the argument of k).

This provides the decay of the dN dK1 dK2 dK3 dK4 · · · dKl integral
involved in (4.29) like,

(1+u1) −3/2 (1+u1+u2) −3/2 (1+u3) −3/2 (1+u4) −3/2 · · · (1+ul) −3/2, (4.30)

up to the use of eight derivatives of V1 , and four derivatives in f, but no
derivatives of k is needed to get this decay. We do not precise the exact
manipulations, which are exactly the same as in the second step. Now, the
function appearing in (4.30) is integrable over [0,+.[ l. Collecting these
informations gives the bound,

[ C l
12 ||V1 ||

l+1
W8, 1(R3) ||k||L.(R3) ||f||W4,.(R3).

Now, collecting bounds over the 2 l possible values of the e’s gives therefore
the theorem. L
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4.4. Proof of Theorem 3.1: Getting a priori Bounds

First Step. Proof of (iv)

Clearly, points (i), (ii), and (iii), imply (iv). For instance, we may write
indeed,

|OrL, a
d (t), fP| [ ||rL, a

d (t, n)||l2n >f 1
n
L
2>

l2n

[ C > 1
L3/2 f
1 n
L
2>

l2n

(here we used (3.8))

[ C 5 1
L3 C

n

7 n
L
8 −2D 61/2 ||f(n)||TD

[ C||f(n)||TD
,

for some constant C as in (3.9), so that (3.8) implies (3.15). Using this
argument several times shows that (iv) is a simple consequence of (i), (ii),
and (iii), so that we now concentrate on the proof of these points.

Second Step. Proof of (i)—The Diagonal Part

Since the original Von-Neumann equation (2.8) has the so-called
Linblad property, it preserves the positivity of the density-matrix as an
operator for any non-negative values of time t \ 0. In particular, as we
already saw, the diagonal coefficients of the density-matrix, rL, a

d (t, n) are
non-negative (as numbers) for any t \ 0.

Now define the following density-matrix ũ(x, y) through its Fourier
coefficients,

u(n, p) :=1[n=p] 5 1
L3 ||r

0
d(n)||L.(R3) −

1
L3 r

0
d
1 n
L
26 , (4.31)

for any n and p in Z3, and let u(t, n, p) be the value at time t of the corre-
sponding solution to the Von-Neumann equation (2.8) with initial data
u(n, p). It is clear that initially, u(n, p) defines a positive density matrix
ũ(x, y) (as an operator), so that the corresponding density matrix ũ(t, x, y)
(with Fourier coefficients u(t, n, p)) remains positive (as an operator) for
any time t \ 0. In particular, the diagonal coefficients u(t, n, n) are non-
negative (as numbers) for any t \ 0.

On the other hand, it is readily seen that the actual value of u(t, n, p)
at time t is given through,

u(t, n, n)=
1
L3 ||r

0
d(n)||L.(R3) −r

L, a
d (t, n), (4.32)
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for the diagonal part of u, and, if n ] p,

u(t, n, p)=−rL, a
nd (t, n, p). (4.33)

As an obvious consequence, we now deduce from the preceding considera-
tions that, for any t \ 0, we have,

0 [ rL, a
nd (t, n) [

1
L3 ||r

0
d(n)||L.(R3). (4.34)

This already proves (3.7).
On the other hand, the Von-Neumann equation (2.8) clearly preserves

the trace of the operator r̃. Indeed, in view of the positivity of the diagonal
coefficients rL, a

d (t, n), we have,

Trr̃(t, x, y)=C
n
rL, a

d (t, n, n), (4.35)

and it is clear from the Von-Neumann equation (2.8) that,

“t
5C

n
rL, a

d (t, n, n)6=0. (4.36)

From (4.36) it follows that,

C
n
rL, a

d (t, n, n)=C
n

1
L3 r

0
d
1 n
L
2=C, (4.37)

and (3.6) is proved. The estimate (3.8) follows by interpolation between
(3.6) and (3.7).

Third Step. Proof of (i)—The Non-Diagonal Part

The first way to (try to) get an l2 bound on rL, a
nd is the following. The

Von-Neumann equation (2.8) preserves the l2n, p norm of the full density
matrix rL, a(t) :=rL, a

d (t)+rL, a
nd (t), and more precisely we have,

“t[||r
L, a
d (t)||2l2n+||rL, a

nd (t)||
2
l2n, p
]=−2aL3 ||rL, a

nd (t)||
2
l2n, p

[ 0. (4.38)

Hence we readily obtain,

||rL, a
nd (t)||l2n, p [ ||rL, a(t=0)||l2n, p=>

1
L3 r

0
d
1 n
L
2>

l2n

=
C
L3/2 .

Unfortunately, this first attempt gives too small a decay in L on the right-
hand-side, since we shall need in the sequel a decay like L −3 (see (3.10)).
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This is the reason why we work out the estimate of rL, a
nd (t) in more

detail. Using the equation satisfied by rL, a
nd (t), we readily write,

“t ||r
L, a
nd (t)||

2
l2n, p

=−2aL3 ||rL, a
nd (t)||

2
l2n, p

+2L3R 7rL, a
nd (t, n, p),

l

L3 V1 1
p−n
L
2[rL, a

d (t, p)−rL, a
d (t, n)]8

l2n, p

[ −2aL3 ||rL, a
nd (t)||

2
l2n, p
+4L3 ||rL, a

nd (t)||l2n, p >
l

L3 V1 1
p−n
L
2>

l.n (l
2
p)
||rL, a

d (t, n)||l2n

[ −2aL3 ||rL, a
nd (t)||

2
l2n, p
+4L3 ||rL, a

nd (t)||l2n, p ×
C
L3/2 ×

C
L3/2 ,

where we used the bound (3.8) together with the fact that,

> 1
L3/2 V1 1

n
L
2>

l2n

[ ||V1(n)||TD
. (4.39)

Hence, we obtain,

“t ||r
L, a
nd (t)||

2
l2n, p

[ −2aL3 ||rL, a
nd (t)||

2
l2n, p
+C ||rL, a

nd (t)||l2n, p. (4.40)

From (4.40) together with the (crucial) fact that rL, a
nd (t) vanishes initially we

deduce,

||rL, a
nd (t)||

2
l2n, p

[ C F
t

s=0
exp(−2aL3(t−s)) ||rL, a

nd (s)||l2n, p

[ C F
t

s=0
exp(−2aL3s) ds sup

0 [ s [ t
||rL, a

nd (s)||l2n, p

[
C
aL3 sup

0 [ s [ t
||rL, a

nd (s)||l2n, p.

Hence,

-t \ 0, ||rL, a
nd (t)||l2n, p [

C
aL3 ,

and (3.10) is proved.

Fourth Step. Proof of (ii)

Using again the equations satisfied by rL, a
d (t) and rL, a

nd (t), we readily
observe that all the time derivatives “bt r

L, a
d (t) and “bt r

L, a
nd (t) (b ¥N) satisfy

From the Von-Neumann Equation to the Quantum Boltzmann Equation 427



the same Von-Neumann equation (2.8). In particular, the following ‘‘con-
servation law’’ holds,

“t[||“
b
t r

L, a
nd (t)||

2
l2n, p
+||“bt r

L, a
d (t)||2l2n]=−2aL3 ||“bt r

L, a
nd (t)||

2
l2n, p
. (4.41)

Now (4.41) implies,

||“bt r
L, a
nd (t)||

2
l2n, p
+||“bt r

L, a
d (t)||2l2n

=||“bt r
L, a
nd (t=0)||2l2n, p+||“bt r

L, a
d (t=0)||2l2n−2aL3 F

t

s=0
||“bt r

L, a
nd (s)||

2
l2n, p
ds \ 0,

from which the following a-priori bound is derived,

F
t

s=0
||“bt r

L, a
nd (s)||

2
l2n, p

[
1
aL3 ×[||“bt r

L, a
nd (t=0)||2l2n, p+||“bt r

L, a
d (t=0)||2l2n]. (4.42)

On the other hand, the actual value of the factor,

||“bt r
L, a
nd (t=0)||2l2n, p+||“bt r

L, a
d (t=0)||2l2n ,

in (4.42) is easily computed from the explicit formulae for the particular
values b=0, 1, namely,

rL, a
d (t=0)=

1
L3 r

0
d
1 n
L
2 , rL, a

nd (t=0)=0,

“tr
L, a
d (t=0)=0, “tr

L, a
nd (t=0)=

il
(2p)3L3 V1 1

p−n
L
25r0

d
1 p
L
2−r0

d
1 n
L
26 ,

so that the following initial estimates hold,

||rL, a
nd (t=0)||2l2n, p+||rL, a

d (t=0)||2l2n [
C
L3 ,

||“tr
L, a
nd (t=0)||2l2n, p+||“tr

L, a
d (t=0)||2l2n [ C.

(4.43)

Now (4.43) together with (4.42) readily give the desired estimates,

F
t

s=0
||rL, a

nd (s)||
2
l2n, p

[
C
aL6 , (4.44)

F
t

s=0
||“tr

L, a
nd (s)||

2
l2n, p

[
C
aL3 . (4.45)
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Note that the bound (4.44) obtained in this way on the non-diagonal part
itself (without time-differentiating) is slightly worse than (3.10). This is due
to the fact that, when no time derivative is involved, we were able to use
much more structure in the third step, and in particular, to use the very
special form of the initial density-matrix.

Fifth Step. Proof of (iii)

The proof of (iii) is very easy. Using the equation satisfied by rL, a
d (t),

we readily estimate,

||“tr
L, a
d (t)||l2n [ >V1 1

n
L
2>

l2n

||rL, a
nd (t)||l2n, p [ CL3/2 1

aL3=
C
aL3/2 ,

where we made use of (3.10). The point (iii) follows. L

4.5. Proof of Theorem 3.2: Convergence as L _ /

First Step. Transforming the Original Equation into a System
of Integral Equations

Let F(n, p) and f(n) be smooth test functions. We first transform the
Von-Neumann equation (2.8) into (equivalent) integral formulae, as
follows. Firstly, the non-diagonal part satisfies (recall that rL, a

nd vanishes
initially),

OrL, a
nd (t), FP=i F

L3t

s=0
C

n, p, k
exp 15 i n

2−p2

L2 −a6 s2

×5 l
L3 V1 1

k−n
L
2 rL, a

nd
1 t− s

L3 , k, p2

−
l

L3 V1 1
p−k
L
2 rL, a

nd
1 t− s

L3 , n, k26 F 1
n
L
,
p
L
2

+i F
L3t

s=0
C
n, p
exp 15 i n

2−p2

L2 −a6s2

×
l

L3 V1 1
p−n
L
25rL,a

d
1t− s

L3 , p2−rL, a
d
1t− s

L3 , n26F1
n
L
,
p
L
2 ,
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and it is an easy computation to transform this relation into,

OrL, a
nd (t), FP

=
il
L3 F

L3t

s=0
exp(−as) 7rL, a

nd
1 t− s

L3
2 , C

k

5exp 1 i k
2−p2

L2 s2 V1 1 n−k
L
2

×F 1 k
L
,
p
L
2− exp 1 i n

2−k2

L2 s2 V1 1 k−p
L
2 F 1 n

L
,
k
L
268

+
il
L3 F

L3t

s=0
exp(−as) 7rL, a

d
1 t− s

L3
2 , C

p

5exp 1 i p
2−n2

L2 s2 V1 1 n−p
L
2

×F 1 p
L
,
n
L
2− exp 1 i n

2−p2

L2 s2 V1 1 p−n
L
2 F 1 n

L
,
p
L
268 .(4.46)

In other terms, if we introduce,

(AL(s) F)(n, p) :=
l

L3 C
k

5exp 1 i 5 k
2

L2−p26 s2 V1 1n− k
L
2 F 1 k

L
, p2

− exp 1 i 5n2−
k2

L2
6 s2 V1 1 k

L
−p2 F 1n, k

L
26 (4.47)

(BL(s) F)(n) :=
l

L3 C
p

5exp 1 i 5 p
2

L2−n26 s2 V1 1n− p
L
2 F 1 p

L
, n2

− exp 1 i 5n2−
p2

L2
6 s2 V1 1 p

L
−n2 F 1n, p

L
26 , (4.48)

then (4.46) reads,

OrL, a
nd (t), FP=i F

L3t

s=0
exp(−as) 7rL, a

nd
1 t− s

L3
2 ,AL(s) F8

+i F
L3t

s=0
exp(−as) 7rL, a

d
1 t− s

L3
2 , BL(s) F8. (4.49)
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We can proceed to the analogous transformation for the diagonal part as
well, thus obtaining,

OrL, a
d (t), fP

=7 1
L3 r

0
d
1 n
L
2 , f8

+il F
t

s=0
C
n, k

5V1 1k−n
L
2 rL, a

nd (s, k, n) f 1
n
L
2−V1 1n−k

L
2 rL, a

nd (s, n, k) f 1
n
L
26

=7 1
L3 r

0
d
1 n
L
2 , f8+il F

t

s=0
C
n, k
rL, a

nd (s, n, k) V1 1
n−k
L
25f 1 k

L
2−f 1 n

L
26 ,

where we used the natural convention,

7 1
L3 r

0
d
1 n
L
2 , f8 :=C

n

1
L3 r

0
d
1 n
L
2 f 1 n

L
2 .

In other words, we have obtained,

OrL, a
d (t), fP=7 1

L3 r
0
d
1 n
L
2 , f8+i F

t

s=0
OrL, a

nd (s), CfP, (4.50)

up to defining,

(Cf)(n, p) :=lV1(n−p)[f(p)−f(n)]. (4.51)

Since now (4.50) only depends on the non-diagonal part through its
average in time, we may integrate the equation (4.49) in time. Summariz-
ing, we have thus transformed the original Von-Neumann equation (2.8)
into the following system of equations,

OrL, a
d (t), fP=7 1

L3 r
0
d
1 n
L
2 , f8+i F

t

s=0
OrL, a

nd (s), CfP, (4.52)

and,

F
t

s=0
OrL, a

nd (s), FP=i F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

nd
1 s− u

L3
2 ,AL(u) F8

+i F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

d
1 s− u

L3
2 , BL(u) F8.

(4.53)

Note that the system (4.52)–(4.53) may be solved iteratively if necessary.
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We now derive the necessary a-priori bounds in order to pass to the
limit LQ. in the integral formulae (4.53) and (4.52).

Second Step. A Priori Bounds

First of all, we have the uniform bound,

:FL3t

s=0
exp(−as) 7rL, a

nd
1 t− s

L3
2 ,AL(s) F8:

[
1
a
sup

0 [ s [ t
||rL, a

nd (s)||l2n, p sup
s \ 0

>[AL(s) F]1 n
L
,
p
L
2>

l2n, p

[
C
a2
sup
s \ 0

> 1
L3 [A

L(s) F]1 n
L
,
p
L
2>

l2n, p

, (4.54)

where we used the bound (3.10). On the more, we readily upper-bound the
factor || 1

L3 A
L(s) F||l2n, p as follows,

> 1
L3 [A

L(s) F]1 n
L
,
p
L
2>

l2n, p

[
|l|
L6
>C

k

5 |V1 | 1 n−k
L
2 |F| 1 k

L
,
p
L
2+|V1 | 1 k−p

L
2 |F| 1 n

L
,
k
L
26>

l2n, p

[
C
L6
>C

k

57n−k
L
8 −D 7 k

L
8 −D 7 p

L
8 −D

+7 p−k
L
8 −D 7 k

L
8 −D 7 n

L
8 −D6>

l2n, p

×||F(n, p)||TD

[
C
L6
>7 p

L
8 −D>

l2p

>7 n
L
8 −D>

l1n

>7 k
L
8 −D >

l2k

×||F(n, p)||TD

[ C > 1
L3/2
7 p
L
8 −D>

l2p

> 1
L3
7 k
L
8 −D>

l1k

> 1
L3/2
7 k
L
8 −D

||l2k ||F(n, p)||TD

[ C ||F(n, p)||TD
, (4.55)

where we used that D > 3, together with the Hölder and the Young
inequalities. Putting (4.54) and (4.55) together gives the uniform bound,

:FL3t

s=0
exp(−as) 7rL, a

nd
1 t− s

L3
2 ,AL(s) FP| [

C
a2

||F(n, p)||TD
, (4.56)
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meaning that the operator on the left-hand-side of (4.56) is uniformly
bounded (in L) on the space of test functions F(n, p) ¥TD(R6).

The same method gives similar uniform bounds on the two terms,

F
L3t

s=0
exp(−as) 7rL, a

d
1 t− s

L3
2 , BL(s) F8 ,

and F
L3t

s=0
exp(−as) 7rL, a

nd
1 t− s

L3
2 , CF8,

as we show now. Indeed, proceeding as in (4.54), we first upper-bound,

:FL3t

s=0
exp(−as)7rL, a

d
1t− s

L3
2 , BL(s) F8: [ C

a
sup

0 [ s [ t

> 1
L3/2 [B

L(s) F]1n
L
2>

l2n

,

where we made use of the a-priori bound (3.8). Again, we may write as in
(4.55),

> 1
L3/2 [B

L(s) F]1 n
L
2>

l2n

[
2

L3/2
>C

p

|l|
L3 |V1 | 1

n−p
L
2 |F| 1 p

L
,
n
L
2>

l2n

[ C > 1
L3/2 V1 1

n
L
2>

l2n

> 1
L3 F
1 p
L
,
n
L
2>

l2n, p

[ C ||F(n, p)||TD
,

where C is as usual. Hence, we get,

:FL3t

s=0
exp(−as) 7rL, a

d
1 t− s

L3
2 , BL(s) F8: [ C

a
||F(n, p)||TD

. (4.57)

Finally, we end this step by proving the following upper-bound,

:FL3t

s=0
exp(−as) 7rL, a

nd
1 t− s

L3
2 , Cf8:

[
C
a2
> 1
L3 [Cf]1

n
L
,
p
L
2>

l2n, p

(here we used (3.10))

[
C
a2
> 1
L3 |V1 | 1

n−p
L
2 |f| 1 n

L
2>

l2n, p

[
C
a2
> 1
L3/2 V1 1

n
L
2>

l2n

> 1
L3/2 f
1 n
L
2>

l2n

,
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and this finally gives,

:FL3t

s=0
exp(−as) 7rL, a

nd
1 t− s

L3
2 , Cf8: [ C

a2
||f(n)||TD

.

We now have derived all the necessary uniform bounds. We proceed to the
convergence proofs.

Third Step. Passing to the Limit in (4.52)

We wish to pass to the limit LQ. in the integral formulae (4.53) and
(4.52).

We begin in this step with the treatment of the easier equation (4.52).
In view of the uniform boundedness of all the operators involved in

(4.52) as operators on TD(R3), as we proved in the second step above, it is
enough to pass to the limit in (4.52) in the special case where the test
function f actually belongs to C.c (R

3).
We turn to identifying the limit of each term in (4.52) when

f ¥ C.c (R
6). We readily have the convergence,

OrL, a
d (t), fP||QLQ. Orad(t), fP in C0(R+

t )

7 1
L3 r

0
d
1 n
L
2 , f8||QLQ. Or0

d, fP :=F
R
3
r0

d(n) f(n) dn.

The last line is indeed an obvious consequence of both the theorem on the
convergence of Riemann sums towards the correponding integrals and the
fact that the test function f has been chosen with compact support. The
first line is merely a consequence of Theorem 3.1-(iv).

There remains to prove the convergence,

F
t

s=0
OrL, a

nd (s), CfP||QLQ. F
t

s=0
Orand(s), CfP. (4.58)

But we know from Theorem 3.1 that the sequence rL, a
nd (s) converges in

[L1(R+
t ;TD(R6))]*-weak*. Hence it suffices to prove that the function

(Cf)(n, p) belongs to TD(R6), knowing that f is C. with compact support
and V1 belongs to TD. This last point is obvious from the very definition
(4.51) of C, and (4.58) is thus proved.
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Summarizing, we have proved that, as LQ., the equation (4.52)
transforms into,

Orad(t), fP=Or0
d, fP+F

t

s=0
Orand(s), CfP, (4.59)

for all f(n) ¥ C.c (R
3), hence for all f ¥TD(R3). This ends this third step.

Fourth Step. Passing to the Limit in (4.53)

We now come to the more difficult treatment of (4.53).
Again, in view of the uniform boundedness of all the operators

involved in (4.53) as operators on TD(R6), it is enough to pass to the limit
in (4.53) in the special case where the test function F actually belongs to
C.c (R

6).
We turn to identifying the limit of each term in (4.53) when

F ¥ C.c (R
6). In view of the weak convergence of rL, a

nd (t), as stated in
Theorem 3.1-(iv), we readily have,

F
t

s=0
OrL, a

nd (s), FP||QLQ. F
t

s=0
Orand(s), FP.

We now claim that the following convergence results hold as LQ.,

F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

nd
1 s− u

L3
2 ,AL(u) F8

Q F
t

s=0
F
+.

u=0
exp(−au)Orand(s),A(u) FP, (4.60)

F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

d
1 s− u

L3
2 , BL(u) F8

Q F
t

s=0
F
+.

u=0
exp(−au)Orad(s), B(u) FP, (4.61)

where we define,

(A(u) F)(n, p) :=l F
R
3
[exp(i[k2−p2] u) V1(n−k) F(k, p)

− exp(i[n2−k2] u) V1(k−p) F(n, k)] dk (4.62)

(B(u) F)(n) :=l F
R
3
[exp(i[p2−n2] u) V1(n−p) F(p, n)

− exp(i[n2−p2] u) V1(p−n) F(n, p)]. (4.63)
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We prove this in two distinct steps. We readily mention that the key diffi-
culty lies in proving that the non-local terms of the form rL, a

d (s− u
L3) do

converge towards rL, a
d (s) (the equation becomes Markovian).

Fourth Step–Part a. Proving (4.61)

The point (4.61) is easily proved. Indeed, we naturally decompose the
left-hand-side of (4.61) into,

F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

d
1 s− u

L3
2 , BL(u) F8

=F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

d
1 s− u

L3
2−rL, a

d (s), BL(u) F8

+F
t

s=0
F
L3s

u=0
exp(−au)OrL, a

d (s), BL(u) F−B(u) FP

+F
t

s=0
F
L3s

u=0
exp(−au)OrL, a

d (s), B(u) FP

:=I+II+III. (4.64)

* It is easily seen that II goes to zero. Indeed, on the one hand,

|OrL, a
d (s), BL(u) F−B(u) FP|

[
C
L3/2
>[BL(u) F−B(u) F] 1 n

L
2>

l2n

(thanks to estimate (3.8))

[ C 5 1
L3 C

n

:C
p

1exp 1 i 5 p
2−n2

L2
6 u2 l

L3 V1 1
n−p
L
2 F 1 p

L
,
n
L
2

− exp 1 i 5 n
2−p2

L2
6 u2 l

L3 V1 1
p−n
L
2 F 1 n

L
,
p
L
22

−l 1 F
R
3
exp 1 i 5p2−

n2

L2
6 u2 V1 1 n

L
−p2 F 1p, n

L
2

− exp 1 i 5 n
2

L2−p26 u2 V1 1p− n
L
2 F 1 n

L
, p22:

2 61/2 0 0,

thanks to the convergence of Riemann sums towards their integral coun-
terpart, and in view of the decay assumptions we made on V1 and on the
test function F (which actually has compact support). On the other hand,
we readily have the uniform (in u) bound, using (4.57),
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|OrL, a
d (s), BL(u) F−B(u) FP|

[ ||rL, a
d (s)||l2n 5 >[BL(u) F]1 n

L
2>

l2n

+>[B(u) F]1 n
L
2>

l2n

6

[
C
L3/2
5>[BL(u) F]1 n

L
2>

l2n

+>[B(u) F]1 n
L
2>

l2n

6

[ C ||F||TD
.

Using now the fact that exp(−au) is integrable over the positive real axis,
the Lebesgue Theorem is enough to obtain the convergence of II towards 0.

* The convergence of III is straightforward,

III=F
t

s=0

7rL, a
d (s), F

L3s

u=0
exp(−au) B(u) F8

Q F
t

s=0

7rad(t), F
+.

u=0
exp(−au) B(u) F8,

in view of the Lebesgue Theorem together with the uniform boundedness
of B(u) F in TD, and using the weak convergence of rL, a

d as stated in
Theorem 3.1-(iv).

* There remains to prove that IQ 0. In order to do so, it turns out
that the uniform Lipschitz estimate (3.12) of Theorem 3.1 is enough.
Indeed,

|I| [ C(F) L3/2 F
t

s=0
F
L3s

u=0
exp(−au) >rL, a

d
1 s− u

L3
2−rL, a

d (s)>
l2n

1here we used that >[BL(u) F]1 n
L
2>

l2n

[ C(F) L3/2,

for some constant depending on F, using (4.57)2

[ C(F) L3/2 F
t

s=0
F
+.

u=0
exp(−au)

u
L3

C
aL3/2

(thanks to (3.12))

[
C×C(F)
a3L3 ,
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hence,

IQ 0 as LQ..

Fourth Step–Part b. Proving (4.60)

Let us now prove the more delicate point (4.60). We first decompose
the left-hand-side of (4.60) in the same way as in part a above, and write,

F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

nd
1 s− u

L3
2 ,AL(u) F8

=F
t

s=0
F
L3s

u=0
exp(−au) 7rL, a

nd
1 s− u

L3
2−rL, a

nd (s),A
L(u) F8

+F
t

s=0
F
L3s

u=0
exp(−au)OrL, a

nd (s),A
L(u) F−A(u) FP

+F
t

s=0
F
L3s

u=0
exp(−au)OrL, a

nd (s),A(u) FP

:=I+II+III. (4.65)

(We use the same notations an in part a above).

* The most obvious term in (4.65) is III, which obviously converges
towards,

IIIQ F
t

s=0
F
+.

u=0
exp(−au)Orand(s),A(u) FP

=F
t

s=0

7rand(s), F
+.

u=0
exp(−au)A(u) F8, (4.66)

in view of the Lebesgue Theorem together with the uniform (in u) boun-
dedness of [A(u) F](n, p) in TD(R6), and using the weak convergence of
rL, a

nd as stated in Theorem 3.1-(iv).

* We now turn to estimating II. The analysis is exactly the same as in
part a above. Again, we begin by writing (use (3.10)),

:F t

s=0
F
L3t

u=0
exp(−au)OrL, a

nd (s),A
L(u) F−A(u) FP|

[
C
a
F
t

s=0
F
+.

u=0
exp(−au) > 1

L3 [A
L(u) F−A(u) F]1 n

L
,
p
L
2>

l2n, p

. (4.67)
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Now we are led to estimating 1
L3 ||[AL(u) F−A(u) F]( n

L ,
p
L)||l2n, p, a term

which can be obviously decomposed as a sum of two symmetric terms, and
we simply estimate one of them, as follows,

> 1
L3 [A

L(u) F−A(u) F]1 n
L
,
p
L
2>

l2n, p

% 5C
n, p

1
L6
:C
k

l

L3 exp 1 i 5
k2−p2

L2
6 u2 V1 1 n−k

L
2 F 1 k

L
,
p
L
2

−F
R
3
exp 1 i 5k2−

p2

L2
6 u2 V1 1 n

L
−k) F(k,

p
L
2 dk :

2 61/2

Q 0,

in view of the theorem on convergence of Riemann sums, together with the
decay assumptions we made on V1 and F.

* We now turn to the analysis of the most difficult term, namely I.
We first write the obvious bound (use (4.55)),

|I| [ L3 F
t

s=0
F
L3s

u=0
exp(−au) >rL, a

nd
1 s− u

L3
2−rL, a

nd (s)>
l2n, p

×> 1
L3 [A

L(u) F]1 n
L
,
p
L
2>

l2n, p

[ C(F)×L3 F
t

s=0
F
L3s

u=0
exp(−au) >rL, a

nd
1 s− u

L3
2−rL, a

nd (s)>
l2n, p

,

where C(F) denotes some constant depending on F.
We now Taylor expand to first order the difference rL, a

nd (s−
u
L3)

−rL, a
nd (s), and use the estimate (ii) of Theorem 3.1. This gives the bound,

[ L3 F
t

s=0
F
L3s

u=0
exp(−au) >rL, a

nd
1 s− u

L3
2−rL, a

nd (s)>
l2n, p

[ L3 F
t

s=0
F
L3s

u=0
exp(−au) F

s

v=s− u

L3

||“tr
L, a
nd (v)||l2n, p

=L3 F
L3t

u=0
F
t

s= u

L3

F
s

v=s− u

L3

exp(−au) ||“tr
L, a
nd (v)||l2n, p

[ L3 F
L3t

u=0
F
t

v=0
F
v+ u

L3

s=v
exp(−au) ||“tr

L, a
nd (v)||l2n, p
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[ |t|1/2 F
L3t

u=0
u exp(−au)1 F t

v=0
||“tr

L, a
nd (v)||

2
l2n, p
21/2

(by the Cauchy–Schwartz inequality in v)

[ C
|t|1/2

a1/2L3/2 F
.

u=0
u exp(−au)

(where we used the estimate (3.11))

[ C
|t|1/2

a5/2L3/2 .

Note that we did not use the Cauchy–Schwartz inequality in v directly on
the integral s−(u/L3) [ v [ s, but rather on the larger domain 0 [ v [ t
(after interchanging the v and s integrations). Indeed, the first approach
leads to an upper-bound of the order one, for we would have lost the L −3

factor stemming from the smallness of the interval of integration in s.
This ends part b of the Fourth Step, hence the Fourth step.

Fifth Step. Conclusion

As a conclusion of the above four steps, we have proved that, as
LQ., the weak limits rad(t) and r

a
nd(t) of r

L, a
d (t) and rL, a

nd (t) satisfy, for
any f(n) ¥TD(R3) and F(n, p) ¥TD(R6),

Orad(t), fP=Or0
d, fP+i F

t

s=0
Orand(s), CfP, (4.68)

and,

F
t

s=0
Orand(s), FP=i F

t

s=0

7rL, a
nd (s), F

+.

u=0
exp(−au)A(u) F8

+i F
t

s=0

7rL, a
d (s), F

+.

u=0
exp(−au) B(u) F8. (4.69)

The operators A(u), B(u) and C have been defined in (4.51), (4.62) and
(4.63).

Coming back to the actual value ofA(u), B(u) and C and transposing
these operators, this means that the following relations hold true in a weak
sense,

“tr
a
d(t)=

il
(2p)3

F
R
3
[V1(k−n) rand(t, k, n)−V1(n−k) rand(t, n, k)] dk, (4.70)
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and,

rand(t, n, p)=
il

(2p)3
F
+.

0
e[i(n2−p2)−a] uV1(p−n)[rad(t, p)−r

a
d(t, n)] du

+
il

(2p)3
F
+.

0
F
R
3
e[i(p2−n2)−a] u

×[V1(k−n) rand(t, k, p)−V1(p−k) rand(t, n, k)] dk du, (4.71)

together with the initial datum,

rad(t=0, n)=r0
d(n). (4.72)

Actually we should say that (4.70) and (4.71) hold between distributions
in L.(R+

t ; [TD(R3)]*) and L.(R+
t ; [TD(R6)]*) respectively, where [TD]*

stands for the dual of TD. Also, (4.72) holds in [TD]* since r
a
d(t) is con-

tinuous, with values in [TD]*.
Now, we may transform iteratively the system (4.70)–(4.71) into a

closed equation on rad(t). The formal manipulations are exactly the same as
in the discrete case (see proof of Theorem 2.1), and lead to formulae (3.26),
(3.27) in the statement of Theorem 3.2, which we rewrite briefly in the
form,

“tr
a
d(t)=C

l \ 0
l l+1[Qalr

a
d](t) . (4.73)

More precisely, when solving the system (4.70)–(4.71) iteratively, one comes
up with a formula of the form,

“tr
a
d(t)=C

l0

l=0
l l+1[Qalr

a
d](t)+l

l0+1[Ral0r
a
nd](t), (4.74)

where l0 is some truncation index, and we wish to let l0 Q. in order to get
(4.73). The term l l0+1[Ral0r

a
nd](t) denotes here the remainder term, whose

explicit value is easily obtained by means of the computations in Sec-
tion 4.2, but we skip it here for sake of simplicity. We simply mention in
passing that the formula defining [Ral0rnd](t) is very similar in structure
to the formula defining [Qal0r

0
d](t), and in particular it involves the same

‘‘oscillatory integrals’’ as treated in Lemma 3.1.
Now, in order to fully justify (4.73), we have to make sure that the

remainder in (4.74) actually goes to zero as l0 Q.. For the sake of sim-
plicity, we shall prove here a slightly weaker result, namely the mere
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convergence of the series involved in (4.73). In view of the actual value of
[Ral0r

a
nd], the convergence towards zero of the remainder term is easily

deduced along the same lines.
More precisely, we prove here that the series in (4.73) converges

weakly, i.e., for any smooth enough test function f(n), we prove that the
series,

C
l \ 0
l l+1OQalr

a
d(t), fP=C

l \ 0
l l+1Orad(t),

tQalfP, (4.75)

converges, where tQal denotes the transpose of Q
a
l . Since we simply know

that the distribution rad(t) is well defined in [TD]*, the only way to ensure
this convergence is to make sure that the series ;l \ 0 l

l+1tQalf converges
inTD, at least for a smooth test function f(n).

If we do not take advantage of the oscillations present in the collision
operators Qal (or

tQal , which are essentially the same operators), we are
instantaneously led to a series of the size ;l (Cl/a) l (the denominator a
stemming from the integration of the real negative exponentials), and this
leads to the constraint l [ l0a, for some small l0. In order to avoid such a
huge restriction, we rather make use of the crucial Lemma 3.1. More pre-
cisely, an easy adaptation of the proof given for this result (see also (3.41))
establishes the estimate,

||l l+1 tQalf||TD
[ l l+1C l

0 ||V1(n)||
l+1
S2D

||f||S2D
. (4.76)

Hence we recover |l l+1OQalr
a
d(t), fP| [ C ll l+1 for some constant C depend-

ing on the various norms of the profiles, hence the convergence of the series
involved in (4.73), at least for small values of l. This explains the restriction
|l| [ l0 we impose in (2.9), as well as in the statement of Theorems 3.2 and 3.3.

This ends the proof of Theorem 3.2. L

4.6. Proof of Theorem 3.3: Convergence as a _ 0

The proof is obvious in view of the arguments involved in the fifth
step of the proof of Theorem 3.2. Indeed, the bound (4.76) established in
the previous paragraph indicates that the series (4.73) actually converges
uniformly with respect to a. On the more (due to the absolute convergence
in time of the oscillatory integrals defining Ql—see Lemma 3.1), the strong
convergence,

[ tQalf](n)Q [ tQlf](n) inTD,

obviously holds for any f(n) ¥S2D.
This ends the proof of Theorem 3.3. L
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5. CONCLUSION: POSSIBLE EXTENSIONS OF THE PRESENT

RESULTS

We have proved that the ‘‘damped’’ Von-Neumann equation posed on
a dilated cube with the periodic boundary conditions (2.8) converges
towards the Quantum Boltzmann equation when the dilation parameter
goes to infinity and the damping parameter to zero (in this order). Since
our method heavily relies on explicit formulae, the question of its validity
for other geometries or boundary conditions is a natural question. For
instance, it would be interesting to investigate the case of a dilated domain
L·W with Dirichlet boundary conditions, where W is some reference
domain, and L is the large dilation parameter. One should expect that the
same result holds whatever the (smooth enough) shape of the initial
domain W. This naturally leads to the question of replacing the periodic
boundary conditions on the cube by Dirichlet boundary conditions. Our
method can easily be adapted to this situation, up to a slight modification
of the combinatorics in the formulae that we leave to the reader. However,
the case of a more general domain W is still open at present.

APPENDIX: THE PHYSISICTS’ VIEW OF FERMI’S GOLDEN RULE

In this section, we briefly recall the traditional derivation of Fermi’s
Golden Rule as given in physics textbooks. Our exposition closely follows
that of [Boh], Chapter 21, but many other references can be used as well
for instance [CTDRG], [CTDL], [Mes], [SSL].

We denote by, kn=(2pL) −3/2 exp(in ·x/L), the normalized eigenstates
of the free Hamiltonian H0=−D on the periodic box [0, 2pL]3. Let
Cp(t)=(k, kp) the p-th component of the wave-function k in this eigen-
function basis. Then Cp(t) evolves in time according to,

i
dCp

dt
=(2pL) −3 C

pŒ
V1 1 p−pŒ

L
2 CpŒ exp 1 i

|p|2−|pŒ|2

L2 t2 .

We now assume that at time t=0, the particle lies entirely in the state n,
which means that Cp(0)=dp, n where dp, n is the Kronecker index. At first
order in the potential, we can therefore write for p ] n,

iĊp % (2pL) −3 V1 1 p−n
L
2 exp 1 i |p|

2−|n|2

L2 t2 ,
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which, after time integration, yields a population |Cp(t)|2 given by,

|Cp(t)|2=
1

(2pL)6
:V1 1 p−n

L
2:2

sin2 1 (|p|2−|n|2)t
2L2
2

1 |p|2−|n|2

2L2
22

.

Now we perform the limit LQ. and we consider a sequence of states such
that p/L, n/L converges to p, n ¥ R3. Then,

(2pL)3 |Cp(t)|2 ’ |Cp(t)|2=
1

(2pL)3
|V1(p−n)|2

sin2 1 (|p|2−|n|2)t
2
2

1 |p|2−|n|2

2
22

.

When t tends to infinity, we have, in the sense of distributions,

sin2 1 (|p|2−|n|2)t
2
2

1 |p|2−|n|2

2
22

’ 2ptd(|p|2−|n|2) , (A.1)

and this yields,

|Cp(t)|2/t ’
2p

(2pL)3
|V1(p−n)|2 d(|p|2−|n|2) , as LQ., tQ., (A.2)

which is precisely Fermi’s Golden Rule. We note that the dependence of
the right-hand side of (A.2) upon L makes it an asymptotic formula rather
than a limit. In conventional scattering theory, a collection of N randomly
distributed identical potentials is considered. Then, taking the expectation
of (A.2) with respect to this random variable, the central limit theorem
gives that O|Cp(t)|2/tP is proportional to N/(2pL)3=n where n is the
density of scatterers, an intrinsic property of the scattering medium. Here,
we shall not consider a random distribution, but rather absorb L in the
scaling.

Finally, to convert formula (A.2) into an expression for the transition
rate from state n to state p, one needs to take the limit tQ 0 of (A.2), and
transform |Cp(t)|2/t into a time derivative. Of course, this step is highly
questionable since the limit tQ. has just been taken before. Obviously,
there are two time scales involved, the short one over which elementary
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scattering events occur (and for which the limit tQ. is taken), and the
long one over which the populations change macroscopically as the result
of the cummulative effects of the elementary scattering events.

Now, this formal computation shows how essential it is to pass from a
discrete set of states p to a continuous one p. Indeed, formula (A.1) would
have no meaning if the variable p ranged over the discrete set Z3. On the
other hand, it would not have been possible to start the computation from
unnormalized states exp(in · x) on the whole space R3, since the populations
|Cp(t)|2 would then be meaningless. A basic motivation for this work is to
give a mathematically rigorous justification of the formal computation
presented above.
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